YOLO11 改进、魔改| 掩码注意力Mask Attention 通过可学习或动态计算的掩码矩阵,在自注意力机制中选择性地强化图像关键区域特征、抑制无关背景信息,提高检测精度

        在计算机视觉领域,传统卷积神经网络(CNN)虽擅长提取局部特征,但在捕捉长距离依赖关系上存在局限,难以处理复杂场景中多目标或重叠物体的信息关联。而基于 Transformer 的模型虽能通过自注意力机制建模全局依赖,却因自注意力的二次复杂度带来巨大的计算和内存开销,且缺乏 CNN 的局部性归纳偏置,易忽略细粒度细节,尤其在低分辨率图像任务中,这些问题更为突出。为平衡局部特征提取、全局上下文捕捉与计算效率,Mask Attention 应运而生,旨在通过选择性关注重要区域,在降低计算成本的同时,提升模型对关键信息的捕捉能力,适用于资源受限场景下的视觉任务。

1. MaskAttention原理

        Mask Attention 的核心原理是在自注意力机制基础上引入可学习或动态计算的掩码矩阵(M),对注意力权重进行调制。首先,将输入特征图重塑后,通过线性变换得到查询(Q)、键(K)和值(V)向量;接着,在计算缩放点积注意力时,加入掩码矩阵 M,该矩阵会抑制无信息区域的贡献,使注意力集中在相关空间位置,计算公式为其中dk​为 Q 和 K 的维度);之后,将多头掩码自注意力的输出进行融合,并通过残差连接与原始输入结合;以此实现对重要特征的强化和无关信息的抑制,高效捕捉长距离依赖。

2. MaskAttention习作思路

        在目标检测任务中:Mask Attention 能够通过掩码矩阵精准筛选出图像中的目标区域,抑制背景等无关信息的干扰,让模型更专注于目标的轮廓、纹理等关键特征,提升目标定位的准确性。同时,其对长距离依赖的高效捕捉能力,可帮助模型更好地理解目标之间的空间关系,比如多个目标的相对位置、遮挡情况等,减少因目标遮挡或密集排列导致的漏检、误检问题,并且相较于传统自注意力,更低的计算开销使得模型在处理高分辨率图像或复杂场景时,仍能保持较快的推理速度,满足实时检测的需求。

         在目标检测任务中:在图像分割任务中,Mask Attention 可针对不同类别或实例生成专属的掩码,精准区分图像中不同物体或区域的边界,提升分割的精细度,尤其在处理低分辨率图像或复杂纹理区域时,能有效保留细粒度细节,避免区域混淆。此外,其结合残差连接和前馈网络的结构,能在整合全局上下文信息的同时,不丢失局部特征,让模型既能把握整体场景结构,又能精准分割局部小目标或复杂形状的区域,且较低的计算复杂度使其在资源受限设备上也能高效运行,拓宽了分割模型的应用场景。

3. YOLO与MaskAttention的结合   

        将 Mask Attention 融入 YOLO 中,可使 YOLO 在保持快速推理优势的同时,通过掩码抑制背景干扰,提升对小目标、密集目标的检测精度;还能帮助 YOLO 更好地理解目标间的空间关联,减少因遮挡导致的检测误差,进一步增强 YOLO 在复杂场景下的适应性。

4.MaskAttention代码部分

YOLO11|YOLO12|改进| 掩码注意力Mask Attention,选择性强化图像关键区域特征、抑制无关背景信息,提高遮挡、小目标的检测能力_哔哩哔哩_bilibili

YOLOv11模型改进讲解,教您如何修改YOLOv11_哔哩哔哩_bilibili

 代码获取:YOLOv8_improve/YOLOV12.md at master · tgf123/YOLOv8_improve · GitHub

5. MaskAttention到YOLOv11中

第一: 将下面的核心代码复制到D:\model\yolov11\ultralytics\change_model路径下,如下图所示。

            ​​​​​​          

第二:在task.py中导入

 ​​​                         

第三:在task.py中的模型配置部分下面代码

                          ​​​​​​​​​​​​​​    ​​​​​​​​​​​​​​​​​​​​​ ​​​​​​​  

第四:将模型配置文件复制到YOLOV11.YAMY文件中

  ​​​​​​​ ​​​​​​​    ​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​     

     ​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​​​​​​​第五:运行代码

from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld
import torch
if __name__=="__main__":



    # 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO("/home/shengtuo/tangfan/YOLO11/ultralytics/cfg/models/11/yolo11_MaskAttention.yaml")\
        # .load(r'E:\Part_time_job_orders\YOLO\YOLOv11\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data="/home/shengtuo/tangfan/YOLO11/ultralytics/cfg/datasets/VOC_my.yaml",
                          epochs=300,
                          imgsz=640,
                          batch=4,
                          # cache = False,
                          # single_cls = False,  # 是否是单类别检测
                          # workers = 0,
                          # resume=r'D:/model/yolov8/runs/detect/train/weights/last.pt',
                          amp = False
                          )
03-18
### Mask in Programming or Data Processing In the context of programming and data processing, **masks** often refer to specific techniques used for filtering, isolating, or manipulating parts of datasets, images, or signals. Below is an explanation based on various contexts: #### Background Subtraction Using Motion Masks One common application of masks involves identifying moving objects within video frames by subtracting a static background image from each frame. A thresholding method is then applied to create what is known as a *motion mask*, highlighting areas where movement occurs[^1]. This approach is widely utilized in computer vision tasks like object tracking. #### Memory Restrictions with Bitwise Masks Masks can also appear when dealing with low-level operations involving bit manipulation. For instance, programs designed to run efficiently even under constrained environments (e.g., embedded systems) sometimes require restricting access to certain regions of memory using bitwise AND/OR logic combined with predefined constants called "bit masks." Such restrictions ensure compatibility with hardware configurations such as Read-Only Memories (ROM)[^2]. #### Image Processing Techniques Utilizing Masks Within digital imaging applications, masks serve another critical role—selectively altering portions of pictures while preserving others unchanged. These binary matrices define pixel-wise conditions determining whether particular transformations should apply; examples include blurring backgrounds around foreground subjects during photo editing sessions. #### Natural Language Processing Applications Incorporating Masks Beyond traditional signal/image domains lies yet another frontier leveraging masking concepts: natural language processing (NLP). Herein, token embeddings representing words/phrases undergo selective modifications via attention mechanisms employing specialized forms of soft/hard-masking schemes depending upon task requirements e.g., filling missing tokens inside sentences through masked language models[^4]. ```python import numpy as np def generate_mask(image_shape): """Generate random boolean mask.""" return np.random.rand(*image_shape) > 0.5 # Example usage demonstrating creation & application of simple binary mask over array elements. array = np.arange(9).reshape((3, 3)) mask = generate_mask(array.shape) masked_array = np.ma.masked_where(mask, array) print("Original Array:\n", array) print("\nGenerated Boolean Mask:\n", mask.astype(int)) print("\nMask Applied Over Original Array:\n", masked_array) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值