#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/point_types.h>
#include <pcl/features/normal_3d.h>
#include <pcl/filters/project_inliers.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/surface/convex_hull.h>
#include <pcl/visualization/pcl_visualizer.h>
int main(int argc, char** argv)
{
// 读取点云文件
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
std::string file_path = "F:\\convex.pcd"; // 替换为你的点云文件路径
if (pcl::io::loadPCDFile<pcl::PointXYZ>(file_path, *cloud) == -1)
{
PCL_ERROR("Couldn't read PCD file \n");
return (-1);
}
std::cout << "Loaded point cloud with " << cloud->points.size() << " points.\n";
// 1. 使用RANSAC算法拟合最佳平面
pcl::SACSegmentation<pcl::PointXYZ> seg;
pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
// 设置RANSAC模型为平面模型
seg.setModelType(pcl::SACMODEL_PLANE);
seg.setMethodType(pcl::SAC_RANSAC);
seg.setDistanceThreshold(0.001); // 阈值,控制点到平面的最大距离
seg.setInputCloud(cloud);
seg.segment(*inliers, *coefficients);
if (inliers->indices.size() == 0)
{
PCL_ERROR("Couldn't estimate a planar model for the given dataset.\n");
return (-1);
}
std::cout << "Plane coefficients: "
<< coefficients->values[0] << " "
<< coefficients->values[1] << " "
<< coefficients->values[2] << " "
<< coefficients->values[3] << std::endl;
// 2. 将点云投影到拟合的平面上
pcl::PointCloud<pcl::PointXYZ>::Ptr projected_cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::ProjectInliers<pcl::PointXYZ> proj;
proj.setModelType(pcl::SACMODEL_PLANE);
proj.setInputCloud(cloud);
proj.setModelCoefficients(coefficients);
proj.filter(*projected_cloud);
std::cout << "Projected cloud size: " << projected_cloud->points.size() << std::endl;
// 3. 使用凸包算法提取二维点云的凸多边形边界
pcl::PointCloud<pcl::PointXYZ>::Ptr hull_points(new pcl::PointCloud<pcl::PointXYZ>);
pcl::ConvexHull<pcl::PointXYZ> chull;
chull.setInputCloud(projected_cloud);
chull.reconstruct(*hull_points);
std::cout << "Convex hull points: " << hull_points->points.size() << std::endl;
// 可视化凸包边界
pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("Cloud Viewer"));
viewer->setBackgroundColor(0, 0, 0);
viewer->addPointCloud<pcl::PointXYZ>(hull_points, pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>(hull_points, 255, 0, 0), "hull cloud");
// 连接凸包的点形成线条并添加编号
pcl::PointCloud<pcl::PointXYZ>::Ptr hull_lines(new pcl::PointCloud<pcl::PointXYZ>());
for (size_t i = 0; i < hull_points->points.size(); ++i)
{
hull_lines->points.push_back(hull_points->points[i]);
// 在每个点上添加编号标签
viewer->addText3D(std::to_string(i + 1), hull_points->points[i], 10, 1.0, 1.0, 1.0, "label" + std::to_string(i + 1));
}
viewer->addPolygon<pcl::PointXYZ>(hull_lines, "convex hull");
while (!viewer->wasStopped())
{
viewer->spinOnce(100);
}
return 0;
}
点云学习笔记22——给点云轮廓拟合成直线后给边界直线编号
于 2024-11-18 22:43:45 首次发布