有 N 种物品和一个容量是 V 的背包.第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
dp[i][j] 表示将前 i 种物品放入容量为 j 的背包中所得到的最大价值,
dp[i][j] = max(dp[i-1][j], dp[i-1][j-v] + w, dp[i-1][j-2*v] + 2*w,..., dp[i-1][j-k*v] + k*w)
k <= s, j - k*v >= 0.
优化:
在dp[j]表示容量为j的情况下,获得的最大价值量
那么,针对每一类物品 i ,我们都更新一下 dp[m] --> dp[0] 的值,最后 dp[m] 就是一个全局最优值
dp[m] = max(dp[m], dp[m-v] + w, dp[m-2*v] + 2*w, dp[m-3*v] + 3*w, ...)
接下来,我们把 dp[0] --> dp[m] 写成下面这种形式
dp[0], dp[v], dp[2*v], dp[3*v], ... , dp[k*v]
dp[1], dp[v+1], dp[2*v+1], dp[3*v+1], ... , dp[k*v+1]
dp[2], dp[v+2], dp[2*v+2], dp[3*v+2], ... , dp[k*v+2]
...
dp[j], dp[v+j], dp[2*v+j], dp[3*v+j], ... , dp[k*v+j]
m 等于 k*v + j,其中 0 <= j < v
所以,我们可以把 dp 数组分成 j 个类,每一类中的值,都是在同类之间转换得到的
也就是说,dp[k*v+j] 只依赖于 { dp[j], dp[v+j], dp[2*v+j], dp[3*v+j], ... , dp[k*v+j] }
因为我们需要的是{ dp[j], dp[v+j], dp[2*v+j], dp[3*v+j], ... , dp[k*v+j] } 中的最大值,
dp[j] = dp[j]
dp[j+v] = max(dp[j] + w, dp[j+v])
dp[j+2v] = max(dp[j] + 2w, dp[j+v] + w, dp[j+2v])
dp[j+3v] = max(dp[j] + 3w, dp[j+v] + 2w, dp[j+2v] + w, dp[j+3v])
...
每次都会增加一个 w ,所以我们需要做一些转换
dp[j] = dp[j]
dp[j+v] = max(dp[j], dp[j+v] - w) + w
dp[j+2v] = max(dp[j], dp[j+v] - w, dp[j+2v] - 2w) + 2w
dp[j+3v] = max(dp[j], dp[j+v] - w, dp[j+2v] - 2w, dp[j+3v] - 3w) + 3w
...
每次入队的值是 dp[j+k*v] - k*w