论文精读——KAN

目录

1.研究背景

2.关键技术

2.1 原始公式

2.2 KAN结构

2.3 缩放定律

3.技术扩展

4.模型效果

5.相关讨论

6.总结


文章标题:《KAN: Kolmogorov–Arnold Networks》

文章地址:

KAN: Kolmogorov-Arnold Networks (arxiv.org)icon-default.png?t=N7T8https://arxiv.org/abs/2404.19756代码地址:

KindXiaoming/pykan: Kolmogorov Arnold Networks (github.com)icon-default.png?t=N7T8https://github.com/KindXiaoming/pykan

1.研究背景

MLP作为深度学习模型中的基础模块,有很好的非线性函数逼近能力,但是作者认为MLP并不是最好的非线性回归器。例如在Transformer中MLP消耗了几乎所有的非嵌入参数,并且可解释性较弱。因此,作者提出用KAN来替代MLP

KAN有以下特点:

全连接结构

上的可学习激活函数

③权重参数被替换成可学习的样条函数

④在节点处进行简单的相加操作

作者从理论上分析了为什么KAN有更好的效果:

其一,样条函数对于低维空间是精准,但是由于它不能利用复杂结构导致在高维的效果较差(维度灾难)

其二,由于MLP能够进行特征学习避免了维度灾难,但它无法优化单变量函数使得在低维空间不如样条函数 KAN利用了上述的两个结构,互相弥补了缺点

2.关键技术

2.1 原始公式

Kolmogorov-Arnold(KA) Representation Theorem假设f是一个在有界域上的多元连续函数,那么f可以写成有限多个单变量连续函数相加

但是这个原始表达式只对应了一个拥有两层非线性激活函数,并且隐藏层只有2n+1个节点的网络

如果仅仅利用原表达式去做机器学习(拟合、回归等),由于一维函数可能非平滑,所以在实际操作中并非是可学习的

2.2 KAN结构

任务定义:找到函数f,拟合输入输出对\begin{Bmatrix} x_{i} ,y _{i} \end{Bmatrix},使得y_{i} \approx f(x_{i}),对应于原始公式只需要找到\Phi _{q}\phi _{q, p}即可

表示一维函数矩阵,定义q为输出维度,p为输入维度

定义KAN的形状表示为:

其中,ni表示第i层节点个数 定义第i个神经元在第l层表示为(l, i),x_{l,i}表示(l, i)神经元的激活值,第l层和第l+1层之间有n_ln_{l+1}个激活函数(因为激活函数在边上,并且为全连接),那么(l, i)和(l+1, i)之间的激活函数可以表示成

上述过程对应于下图:

因此第l+1层的第j个节点可表示成:

写成矩阵形式为:

其中,\Phi _{l}表示第l层的激活函数矩阵,那么对应一个有L层的KAN网络,有:

写成与原始公式相似的形式:

在实现上,激活函数采用多个一维的B-Spline函数的结合,并利用残差激活函数

参数量对比,L层,宽度N(k表示样条函数为k阶)

KAN:(上限挺好推的,但是下限不太懂为什么是+k而不是*k)

MLP:

2.3 缩放定律

神经缩放定律是测试损失(test Loss)随着模型参数的增加而减小的现象,即其中 ℓ 是测试 RMSE,N 是参数数量,α 是缩放指数。也就是说,参数量越大,误差越小(精度越高)

KAN能通过细分数据域网络来提高B-Spline函数逼近的精度,从而使缩放更加自由,能够有效控制参数量。而MLP对于不同的网格划分需要重新进行训练

例如,可以先训练一个参数较少的 KAN,然后通过使Spline网格粒度更细,使其扩展到参数较多的 KAN,这一方式降低了复杂度

3.技术扩展

为了提高KAN的可解释性,作者提出了一些简化模型的技术:

①稀疏化

MLP:L1正则化

KAN:定义L1范数,去除线性权重,再加上熵正则化

因此可以得到整体的训练损失为:

预测损失+L1正则化+熵正则化,通过λ控制正则化幅度

②可视化

将激活函数的透明度设置为与\tanh (\beta A_{l,i,j})成正比,其中 β = 3

重要的函数会凸显出来

③剪枝

对每个节点定义输入输出分数,输入输出分数都大于阈值的节点会被保留下来,其余会被修剪掉

④符号化

如果猜测某些激活函数实际上是符号函数(例如 cos 或 log),则提供一个接口将其设置为指定的符号形式,后续只需要拟合参数即可

在剪枝完后,用户可以根据形状选择符号函数的公式,然后进一步训练,如果训练损失下降了,就表明选择了正确的符号表达式

4.模型效果

①拟合精度方面的比较

KAN有更好的放缩曲线,特别是高维,而MLP很快就饱和了,表明了KAN的扩展能力很强,并且KAN像MLP一样网络越深效果越好

②解决更复杂的偏微分方程

KAN 使用较小的网络更少的参数实现了更好的误差缩放定律

作者还将KAN用在数学和物理领域的一些实际应用上,均表明KAN能用更少的参数量得到更好的效果

5.相关讨论

KAN还有一些可以改进的地方:

①在精度层面,还可以进一步研究模型结构训练细节来提高效果

②对于KAN来说,最大的问题是训练太慢,因为无法利用batch计算,可以尝试对激活函数分组,同一组内使用相同的激活函数

③可以引入自适应性来提高KAN的精度和效率

④将KAN用在实际任务中,机器学习/理论科学

⑤由于KAN具有可解释性,可以尝试与AI4Science结合

6.总结

KAN基于Kolmogorov-Arnold Representation Theorem,并对两层网络进行扩展。通过将可学习激活函数设置在边上,而节点处进行简单的相加操作构建了KAN模型。由于KAN使用较少的参数量就能媲美MLP,并且还能通过简化技术使其具有良好的可解释性,因此KAN有望替代MLP作为神经网络中的基础模块。相比MLP而言,KAN有更好的缩放性能,但在相同的参数量下,KAN的训练速度过慢成为了最大的问题。

笔者的思考:

①作者强调了浅层的KAN就能达到甚至超过深层MLP的性能,是否意味着深层的KAN不太能实现(训练太慢,小模型适用)

②KAN不太适用于现在的深度学习框架,从硬件计算层面不太有优势

③从网络架构来看,其实KAN和MLP差不多(虽然原理不同),区别在于MLP是进行线性组合再进行激活,而KAN是先进行激活再线性组合,并且KAN中不同边上的激活函数并不相同,也正是这点带来了额外的计算复杂度,是否意味着KAN只是MLP更一般的形式

④笔者认为本文最大的特点是可解释性,适合用在较小的问题上,在AI4Science领域可能会有较大提高

### MATLAB 安装过程中出现可疑行为检测的解决方案 当遇到MATLAB安装过程中的错误提示“We have detected suspicious login behavior and further attempts will be blocked. Please contact the administrator”时,这通常意味着系统安全机制识别到了潜在的风险活动并采取了预防措施[^1]。 此类警告可能由多种因素触发,包括但不限于网络环境不稳定、防火墙设置严格或是使用的下载源存在问题。为了有效解决问题,建议按照以下方案操作: #### 调整网络配置 由于该类问题多源于不稳定的网络连接或特定类型的代理服务器,因此可以考虑调整网络参数来规避这一情况。具体来说,尝试切换至更稳定可靠的互联网接入方式;如果正在使用公司内部网,则应咨询IT部门确认是否有特殊的安全策略影响软件部署流程[^2]。 #### 修改防火墙/杀毒软件设定 部分情况下,本地计算机上的防护程序可能会误判正常的文件传输动作而发出警报。适当放宽对于临时目录读写权限以及允许来自MathWorks官方站点的数据交换可有助于顺利完成整个安装进程。 #### 清除缓存数据 有时残留的历史记录也可能引发冲突,故此有必要彻底清除之前未完成的任务痕迹后再重新启动应用程序包的获取工作。确保删除所有与目标产品关联的日志条目及临时文件夹内容之后再继续下一步骤的操作。 #### 验证ISO镜像完整性 倘若通过光盘映像形式来进行离线布置的话,请务必事先校验所持有的介质是否完好无损。利用哈希值对比工具核对下载链接给出的标准答案能够极大程度上减少因资料损坏造成的意外状况发生几率。 ```bash sha256sum matlab_R2023a_glnxa64.iso # Linux/MacOS下验证ISO文件完整性的命令样例 certUtil -hashfile "C:\path\to\matlab_R2023a_win64.zip" SHA256 # Windows平台对应的检验语句模板 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五倍子的代码空间

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值