实现复数的加减乘运算,并实现判断两个复数是否是共轭复数的功能。

实现复数的加减乘运算,并实现判断两个复数是否是共轭复数的功能。

#include <iostream>
using namespace std;

class Complex {
private:
    double real;//实部
    double imag;//虚部

public:
    Complex(double r = 0.0, double i = 0.0) {
        real = r;
        imag = i;
    }

    //加减乘
    friend Complex operator+(const Complex& c1, const Complex& c2);
    friend Complex operator-(const Complex& c1, const Complex& c2);
    friend Complex operator*(const Complex& c1, const Complex& c2);

    //判断两个数是否构成共轭复数
    friend bool isComplex(const Complex& c1, const Complex& c2);

    //输出结果
    void display() {
        cout << real << " + " << imag << "i" << endl;
    }
};

//复数相加(a+bi)+(c+di)=(a+c)+(b+d)i
Complex operator+(const Complex& c1, const Complex& c2) {
    return Complex(c1.real + c2.real, c1.imag + c2.imag);
}

//复数相减(a+bi)-(c+di)=(a-c)+(b-d)i
Complex operator-(const Complex& c1, const Complex& c2) {
    return Complex(c1.real - c2.real, c1.imag - c2.imag);
}

//复数相乘(a+bi)(c+di)=(ac-bd)+(bc+ad)i
Complex operator*(const Complex& c1, const Complex& c2) {
    double r = c1.real * c2.real - c1.imag * c2.imag;
    double i = c1.real * c2.imag + c1.imag * c2.real;
    return Complex(r, i);
}


//判断两个数是否构成共轭复数(实部相等并且虚部互为相反数)
bool isComplex(const Complex& c1, const Complex& c2) {
    return (c1.real == c2.real) && (c1.imag == -c2.imag);
}

int main() {
    Complex c1(1.0, 2.0);
    Complex c2(1.0, -2.0);

    Complex sum = c1 + c2;
    Complex difference = c1 - c2;
    Complex product = c1 * c2;

    cout << "Sum: ";
    sum.display();

    cout << "Difference: ";
    difference.display();

    cout << "Product: ";
    product.display();

    if (isComplex(c1, c2)) {
        cout << "c1 and c2 are conjugate complex numbers." << endl;
    }
    else {
        cout << "c1 and c2 are not conjugate complex numbers." << endl;
    }

    return 0;
}

 运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值