java面试

第一.JVM

1.JVM,JRE,JDK的关系

Java 虚拟机(Java Virtual Machine, JVM)是运行 Java 字节码的虚拟机

JRE 是运行已编译 Java 程序所需的环境,主要包含以下两个部分:

  1. JVM : 也就是我们上面提到的 Java 虚拟机。
  2. Java 基础类库(Class Library):一组标准的类库,提供常用的功能和 API(如 I/O 操作、网络通信、数据结构等)。

JDK(Java Development Kit)是一个功能齐全的 Java 开发工具包,供开发者使用,用于创建和编译 Java 程序。它包含了 JRE(Java Runtime Environment),以及编译器 javac 和其他工具,如 javadoc(文档生成器)、jdb(调试器)、jconsole(监控工具)、javap(反编译工具)等。

2. JVM包含哪几部分?

JVM 主要由四大部分组成:ClassLoader(类加载器),Runtime Data Area(运行时数据区,内存分区),Execution Engine(执行引擎)(命令解释器),Native Interface(本地库接口)

我们来看看执行过程:首先需要准备好编译好的 Java 字节码文件(即class文件),计算机要运行程序需要先通过一定方式(类加载器)将 class 文件加载到内存中(运行时数据区),但是字节码文件是JVM定义的一套指令集规范,并不能直接交给底层操作系统去执行,因此需要特定的命令解释器(执行引擎)将字节码翻译成特定的操作系统指令集交给 CPU 去执行,这个过程中会需要调用到一些不同语言为 Java 提供的接口(例如驱动、地图制作等),这就用到了本地 Native 接口(本地库接口)。 

  • Runtime Data Area:是存放数据的,分为五部分:Stack(虚拟机栈),Heap(堆),Method Area(方法区),PC Register(程序计数器),Native Method Stack(本地方法栈)。几乎所有的关于 Java 内存方面的问题,都是集中在这块。

3.Java程序是怎么运行的

写好的 Java 源代码文件经过 Java 编译器编译成字节码文件后,通过类加载器加载到内存中,才能被实例化,然后到 Java 虚拟机中解释执行,最后通过操作系统操作 CPU 执行获取结果。

① 类加载器

如果 JVM 想要执行这个 .class 文件,我们需要将其装进一个 类加载器 中,它就像一个搬运工一样,会把所有的 .class 文件全部搬进 JVM 里面来。

② 方法区

方法区 是用于存放类似于元数据信息方面的数据的,比如类信息,常量,静态变量,编译后代码···等,包含:

  1. 类信息:类元数据,包括类名、父类名、接口、字段、方法等。
  2. 常量池:编译时生成的各种字面量和符号引用,比如字符串常量,数值常量,类和接口的符号引用(八大基本数据类型和三大引用数据类型的引用都有
  3. 静态变量:类级别的静态变量。将数据对象定义为静态类变量,进程内的所有线程即可在数据对象允许的范围内实现访问数据对象。
  4. 即时编译后的代码:JIT编译后的本地代码。

类加载器将 .class 文件搬过来就是先丢到这一块上

③ 堆

主要放了一些存储的数据,比如对象实例,数组···等,它和方法区都同属于 线程共享区域 。也就是说它们都是 线程不安全

注解:

  • 符号引用:在编译期生成,表示类、方法、字段等的名称和描述符,存储在方法区的常量池中,运行时动态解析成直接内存地址。
  • 实例:在运行期生成,表示类的具体实现,分配在堆内存中,包含实际的数据和方法,拥有自己的内存地址。
④ 栈:就是调用java方法,本地方法栈是调用c/C++写的方法

这是我们的代码运行空间。我们编写的每一个方法都会放到 里面运行。

我们会听说过 本地方法栈 或者 本地方法接口 这两个名词,不过我们基本不会涉及这两块的内容,它俩底层是使用 C 来进行工作的,和 Java 没有太大的关系。

JVM虚拟机栈是为每个线程私有的内存区域,用于存储Java方法的调用信息。每当一个Java方法被调用时,JVM会在虚拟机栈中创建一个新的栈帧(Stack Frame),该栈帧包含了方法执行所需的信息。

栈帧的内容

每个栈帧主要包含以下几个部分:

  1. 局部变量表(Local Variable Array):用于存储方法参数和局部变量。
  2. 操作数栈(Operand Stack):用于操作数的临时存储和计算。
  3. 动态链接(Dynamic Linking):指向运行时常量池的方法引用,用于支持方法调用和返回。
  4. 方法返回地址:保存方法正常退出或者异常退出时需要返回的位置。
  5. 附加信息:与调试和异常处理相关的一些附加信息。
⑤ 程序计数器

主要就是完成一个加载工作,类似于一个指针一样的,指向下一行我们需要执行的代码。和栈一样,都是 线程独享 的,就是说每一个线程都会有自己对应的一块区域而不会存在并发和多线程的问题。

4.JVM内存分布图:

5.本地方法栈有什么用?

本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。

本地方法(Native Method)是指那些不是用Java语言编写的,而是在其他编程语言(如C、C++等)中实现的方法。Java通过Java Native Interface(JNI)来调用这些方法,这使得Java程序能与本地操作系统、硬件或其他编写了本地代码的库进行交互。

6.启动程序如何看加载了哪些类,以及加载顺序? 

类从被加载到虚拟机内存中开始到卸载出内存为止,它的整个生命周期可以简单概括为 7 个阶段:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)家宴贝姐厨师鞋

7. 谈谈JVM的类加载器,以及双亲委派模型 

类加载器(Class Loader)是Java虚拟机(JVM)中用于将类文件加载到内存中的组件。它负责找到类文件(通常是.class文件),然后将其转换为JVM可以使用的类对象。

JVM 中内置了三个重要的 ClassLoader

  1. BootstrapClassLoader(启动类加载器):最顶层的加载类,由 C++实现,通常表示为 null,并且没有父级,主要用来加载 JDK 内部的核心类库( %JAVA_HOME%/lib目录下的 rt.jarresources.jarcharsets.jar等 jar 包和类)以及被 -Xbootclasspath参数指定的路径下的所有类。
  2. ExtensionClassLoader(扩展类加载器):主要负责加载 %JRE_HOME%/lib/ext 目录下的 jar 包和类以及被 java.ext.dirs 系统变量所指定的路径下的所有类。
  3. AppClassLoader(应用程序类加载器):面向我们用户的加载器,负责加载当前应用 classpath 下的所有 jar 包和类。

当一个类收到了加载请求时,它是不会先自己去尝试加载的,而是委派给父类去完成,比如我现在要 new 一个 Person,这个 Person 是我们自定义的类,如果我们要加载它,就会先委派 App ClassLoader ,只有当父类加载器都反馈自己无法完成这个请求(也就是父类加载器都没有找到加载所需的 Class)时,子类加载器才会自行尝试加载。

这样做的好处是,比如加载位于 rt.jar 包中的类时不管是哪个加载器加载,最终都会委托到 BootStrap ClassLoader 进行加载,这样保证了使用不同的类加载器得到的都是同一个结果。

如何打破双亲委派机制

如果想打破双亲委派模型则需要重写 loadClass() 方法。

重写 loadClass()方法之后,我们就可以改变传统双亲委派模型的执行流程。例如,子类加载器可以在委派给父类加载器之前,先自己尝试加载这个类,或者在父类加载器返回之后,再尝试从其他地方加载这个类。具体的规则由我们自己实现,根据项目需求定制化。

8.垃圾回收机制

1.哪些内存需要回收

图中程序计数器、虚拟机栈、本地方法栈,3 个区域随着线程的生存而生存的。内存分配和回收都是确定的。随着线程的结束内存自然就被回收了,因此不需要考虑垃圾回收的问题。而 Java 堆和方法区则不一样,各线程共享,内存的分配和回收都是动态的。因此垃圾收集器所关注的都是堆和方法这部分内存。

2.怎么判断一个垃圾

1.引用计数器计算:给对象添加一个引用计数器,每次引用这个对象时计数器加一,引用失效时减一,计数器等于 0 时就是不会再次使用的。不过这个方法有一种情况就是出现对象的循环引用时 GC 没法回收。

2.可达性分析计算:这是一种类似于二叉树的实现,将一系列的 GC ROOTS 作为起始的存活对象集,从这个节点往下搜索,搜索所走过的路径成为引用链,把能被该集合引用到的对象加入到集合中。搜索当一个对象到 GC Roots 没有使用任何引用链时,则说明该对象是不可用的。主流的商用程序语言,例如 Java,C#等都是靠这招去判定对象是否存活的。

补充:哪些是GC Roots

  • 虚拟机栈(栈帧中的本地方法表)中引用的对象(局部变量)
  • 方法区中静态变量所引用的对象(静态变量)
  • 方法区中常量引用的对象
  • 本地方法栈(即 native 修饰的方法)中 JNI 引用的对象(JNI 是 Java 虚拟机调用对应的 C 函数的方式,通过 JNI 函数也可以创建新的 Java 对象。且 JNI 对于对象的局部引用或者全局引用都会把它们指向的对象都标记为不可回收)
  • 已启动的且未终止的 Java 线程

由GC roots可以搜索到的存活对象:

  • 直接引用:GC Roots直接引用的对象。
  • 间接引用:那些被GC Roots可达的对象,可能引用了其他对象(例如,一个对象的成员变量引用了另一个对象)。

3.垃圾回收算法

1.标记-清除算法:

标记-清除(Mark-and-Sweep)算法分为“标记(Mark)”和“清除(Sweep)”阶段:首先标记出所有不需要回收的对象,在标记完成后统一回收掉所有没有被标记的对象。

问题:

  1. 效率问题:标记和清除两个过程效率都不高。
  2. 空间问题:标记清除后会产生大量不连续的内存碎片。 

2.复制算法:

为了解决标记-清除算法的效率和内存碎片问题,复制(Copying)收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

3.标记-整理算法

标记-整理(Mark-and-Compact)算法是根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。

由于多了整理这一步,因此效率也不高,适合老年代这种垃圾回收频率不是很高的场景。

4.分代-收集算法

当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将 Java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

比如在新生代中,每次收集都会有大量对象死去,所以可以选择“复制”算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。

4.CMS 收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用。

CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

从名字中的Mark Sweep这两个词可以看出,CMS 收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  • 初始标记: 暂停所有的其他线程,并记录下直接与 root 相连的对象,速度很快 ;
  • 并发标记: 同时开启 GC 和用户线程,用一个闭包结构去记录可达对象。但在这个阶段结束,这个闭包结构并不能保证包含当前所有的可达对象。因为用户线程可能会不断的更新引用域,所以 GC 线程无法保证可达性分析的实时性。所以这个算法里会跟踪记录这些发生引用更新的地方。
  • 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短
  • 并发清除: 开启用户线程,同时 GC 线程开始对未标记的区域做清扫。

CMS 收集器

CMS 收集器

从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:

  • 对 CPU 资源敏感;
  • 无法处理浮动垃圾;
  • 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生。

CMS 垃圾回收器在 Java 9 中已经被标记为过时(deprecated),并在 Java 14 中被移除。

5.G1垃圾回收器的回收过程

G1 收集器的运作大致分为以下几个步骤:

  • 初始标记:仅仅只是标记一下GC Roots直接能引用的对象
  • 并发标记:进行GC Roots追踪,从GC Roots开始追踪所有的存活对象
  • 最终标记:系统程序是禁止运行的,但是会根据并发标记阶段记录的那些对象修改,最终标记一下有哪些存活对象,有哪些是垃圾对象。就是并发标记阶段有些存活对象发生改变
  • 筛选回收

G1 收集器

G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来) 。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。

从 JDK9 开始,G1 垃圾收集器成为了默认的垃圾收集器。

9.如何进行JVM调优  

1.JVM调优参数

1.调整最大堆内存和最小堆内存

-Xmx –Xms:指定 java 堆最大值(默认值是物理内存的 1/4(<1GB))和初始 java 堆最小值(默认值是物理内存的 1/64(<1GB))

默认(MinHeapFreeRatio 参数可以调整)空余堆内存小于 40%时,JVM 就会增大堆直到-Xmx 的最大限制.,默认(MaxHeapFreeRatio 参数可以调整)空余堆内存大于 70%时,JVM 会减少堆直到 -Xms 的最小限制。简单点来说,你不停地往堆内存里面丢数据,等它剩余大小小于 40%了,JVM 就会动态申请内存空间不过会小于-Xmx,如果剩余大小大于 70%,又会动态缩小不过不会小于–Xms。

2.-XX:NewRatio

调整新生代和老年代的比值,例如:-XX:NewRatio=4,表示新生代:老年代=1:4,即新生代占整个堆的 1/5。在 Xms=Xmx 并且设置了 Xmn 的情况下,该参数不需要进行设置。

3.-XX:SurvivorRatio(幸存代)--- 设置两个 Survivor 区和 eden 的比

4.-XX:NewSize --- 设置年轻代大小 -XX:MaxNewSize --- 设置年轻代最大值

5.-XX:PermSize -XX:MaxPermSize

设置永久区的大小

2.jvm调优工具

jdk自带的监控工具

jconsole:对jvm的内存,线程,类监控

jvisualvm:jdk自带的分析工具

10.JVM内存:

JVM 内存会划分为堆内存和非堆内存,堆内存中也会划分为年轻代老年代,而非堆内存则为永久代。在 1.8 中已经移除永久代,替代品是一个元空间(MetaSpace),最大区别是 metaSpace 是不存在于 JVM 中的,它使用的是本地内存。并有两个参数

当 Eden 空间满了之后,会触发一个叫做 Minor GC(就是一个发生在年轻代的 GC)的操作,存活下来的对象移动到 Survivor0 区。Survivor0 区满后触发 Minor GC,就会将存活对象移动到 Survivor1 区,此时还会把 from 和 to 两个指针交换,这样保证了一段时间内总有一个 survivor 区为空且 to 所指向的 survivor 区为空。经过多次的 Minor GC 后仍然存活的对象(这里的存活判断是 15 次,对应到虚拟机参数为 -XX:MaxTenuringThreshold 。为什么是 15,因为 HotSpot 会在对象头中的标记字段里记录年龄,分配到的空间仅有 4 位,所以最多只能记录到 15)会移动到老年代。

🐛 修正:当 Eden 区内存空间满了的时候,就会触发 Minor GC,Survivor0 区满不会触发 Minor GC 。

那 Survivor0 区 的对象什么时候垃圾回收呢?

假设 Survivor0 区现在是满的,此时又触发了 Minor GC ,发现 Survivor0 区依旧是满的,存不下,此时会将 S0 区与 Eden 区的对象一起进行可达性分析,找出活跃的对象,将它复制到 S1 区并且将 S0 区域和 Eden 区的对象给清空,这样那些不可达的对象进行清除,并且将 S0 区 和 S1 区交换。

老年代是存储长期存活的对象的,占满时就会触发我们最常听说的 Full GC,期间会停止所有线程等待 GC 的完成。所以对于响应要求高的应用应该尽量去减少发生 Full GC 从而避免响应超时的问题。

大对象直接进入老年代

大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。

大对象直接进入老年代的行为是由虚拟机动态决定的,它与具体使用的垃圾回收器和相关参数有关。大对象直接进入老年代是一种优化策略,旨在避免将大对象放入新生代,从而减少新生代的垃圾回收频率和成本。

长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。

大部分情况,对象都会首先在 Eden 区域分配。如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间(s0 或者 s1)中,并将对象年龄设为 1(Eden 区->Survivor 区后对象的初始年龄变为 1)。

对象在 Survivor 中每熬过一次 MinorGC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

1.堆:

Java 堆是垃圾收集器管理的主要区域,因此也被称作 GC 堆(Garbage Collected Heap)。从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代;

在 JDK 7 版本及 JDK 7 版本之前,堆内存被通常分为下面三部分:

  1. 新生代内存(Young Generation)
  2. 老生代(Old Generation)
  3. 永久代(Permanent Generation)

新生代内存分为Eden 区、两个 Survivor 区 S0 和 S1 JDK 8 版本之后 PermGen(永久代) 已被 Metaspace(元空间) 取代,元空间使用的是本地内存

11.内存泄漏和内存溢出的理解?

内存泄露:内存泄漏是指程序在运行过程中不再使用的对象仍然被引用,而无法被垃圾收集器回收,从而导致可用内存逐渐减少。虽然在Java中,垃圾回收机制会自动回收不再使用的对象,但如果有对象仍被不再使用的引用持有,垃圾收集器无法回收这些内存,最终可能导致程序的内存使用不断增加。

内存泄露常见原因:

  • 静态集合:使用静态数据结构(如HashMapArrayList)存储对象,且未清理。
  • 事件监听:未取消对事件源的监听,导致对象持续被引用。
  • 线程:未停止的线程可能持有对象引用,无法被回收。

内存溢出:内存溢出是指Java虚拟机(JVM)在申请内存时,无法找到足够的内存,最终引发OutOfMemoryError。这通常发生在堆内存不足以存放新创建的对象时。

内存溢出常见原因:

  • 大量对象创建:程序中不断创建大量对象,超出JVM堆的限制。
  • 持久引用:大型数据结构(如缓存、集合等)长时间持有对象引用,导致内存累积。
  • 递归调用:深度递归导致栈溢出。

12.内存泄漏的例子

threadlocal就会内存泄漏,因为treadlocalmap中的threadlocal作为key是弱引用,value是强引用,弱引用GC时一定会回收,但是强引用不会被回收

13.引用类型

引用类型主要分为强软弱虚四种:

  • 强引用指的就是代码中普遍存在的赋值方式,比如A a = new A()这种。强引用关联的对象,永远不会被GC回收。
  • 软引用可以用SoftReference来描述,指的是那些有用但是不是必须要的对象。系统在发生内存溢出前会对这类引用的对象进行回收。
  • 弱引用可以用WeakReference来描述,他的强度比软引用更低一点,弱引用的对象下一次GC的时候一定会被回收,而不管内存是否足够。
  • 虚引用也被称作幻影引用,是最弱的引用关系,可以用PhantomReference来描述,他必须和ReferenceQueue一起使用,同样的当发生GC的时候,虚引用也会被回收。可以用虚引用来管理堆外内存。

14.jvm 内存结构有哪几种内存溢出的情况?

  • 堆内存溢出:当出现Java.lang.OutOfMemoryError:Java heap space异常时,就是堆内存溢出了。原因是代码中可能存在大对象分配,或者发生了内存泄露,导致在多次GC之后,还是无法找到一块足够大的内存容纳当前对象。
  • 栈溢出:如果我们写一段程序不断的进行递归调用,而且没有退出条件,就会导致不断地进行压栈。类似这种情况,JVM 实际会抛出 StackOverFlowError;当然,如果 JVM 试图去扩展栈空间的的时候失败,则会抛出 OutOfMemoryError。
  • 元空间溢出:元空间的溢出,系统会抛出Java.lang.OutOfMemoryError: Metaspace。出现这个异常的问题的原因是系统的代码非常多或引用的第三方包非常多或者通过动态代码生成类加载等方法,导致元空间的内存占用很大。
  • 直接内存内存溢出:在使用ByteBuffer中的allocateDirect()的时候会用到,很多JavaNIO(像netty)的框架中被封装为其他的方法,出现该问题时会抛出Java.lang.OutOfMemoryError: Direct buffer memory异常。

15.怎么排查内存泄漏

首先看出现什么问题 如果出现oom 频繁fullgc都是内存溢出的情形

首先用jstat查看jvm各个内存区域的使用情况和gc情况

用dump工具把内存数据下载下来

用mat工具进行分析(会自动分析并且找到有问题的类)我们对代码进行优化就好了

16.CPU飙升100%怎么排查

1.使用 top 找到占用 CPU 最高的 Java 进程

2.top -Hp pid找到占用CPU最高的线程

3. jstack生成线程快照

4.根据快照找到问题

二.并发编程

1.什么是线程和进程 协程

线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的方法区资源,但每个线程有自己的程序计数器虚拟机栈本地方法栈,所以系统在产生一个线程,或是在各个线程之间做切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。

什么是协程:用户态的轻量级线程,调度由用户决定 可以在io操作时挂起

2.什么是并发的三大特性

并发编程中的三大特性是原子性、可见性和有序性。这些特性是为了确保在多线程环境下,程序的正确性和一致性。

  1. 原子性:指一个操作是不可分割的,要么全部执行,要么不执行。原子性确保了在多线程环境下,操作不会因为线程切换而被中断。

  2. 可见性:指一个线程对共享变量的修改,其他线程能够立即看到。可见性可以通过同步机制(如锁、volatile关键字等)来保证。

  3. 有序性:指程序执行的顺序按照代码的顺序进行。有序性可以通过内存屏障、锁等机制来保证,从而避免指令重排序对程序正确性的影响。

这些特性共同作用,确保了并发程序在多线程环境下的正确性和可靠性。

什么时候用多线程:并发场景下

线程的创建方式有哪些?

1.继承Thread类

这是最直接的一种方式,用户自定义类继承java.lang.Thread类,重写其run()方法,run()方法中定义了线程执行的具体任务。创建该类的实例后,通过调用start()方法启动线程。

class MyThread extends Thread {
    @Override
    public void run() {
        // 线程执行的代码
    }
}

public static void main(String[] args) {
    MyThread t = new MyThread();
    t.start();
}

采用继承Thread类方式

  • 优点: 编写简单,如果需要访问当前线程,无需使用Thread.currentThread ()方法,直接使用this,即可获得当前线程
  • 缺点:因为线程类已经继承了Thread类,所以不能再继承其他的父类

2.实现Runnable接口

如果一个类已经继承了其他类,就不能再继承Thread类,此时可以实现java.lang.Runnable接口。实现Runnable接口需要重写run()方法,然后将此Runnable对象作为参数传递给Thread类的构造器,创建Thread对象后调用其start()方法启动线程。

class MyRunnable implements Runnable {
    @Override
    public void run() {
        // 线程执行的代码
    }
}

public static void main(String[] args) {
    Thread t = new Thread(new MyRunnable());
    t.start();
}

采用实现Runnable接口方式:

  • 优点:线程类只是实现了Runable接口,还可以继承其他的类。在这种方式下,可以多个线程共享同一个目标对象,所以非常适合多个相同线程来处理同一份资源的情况,从而可以将CPU代码和数据分开,形成清晰的模型,较好地体现了面向对象的思想。
  • 缺点:编程稍微复杂,如果需要访问当前线程,必须使用Thread.currentThread()方法。

3.使用线程池(Executor框架)

从Java 5开始引入的java.util.concurrent.ExecutorService和相关类提供了线程池的支持,这是一种更高效的线程管理方式,避免了频繁创建和销毁线程的开销。可以通过Executors类的静态方法创建不同类型的线程池。

class Task implements Runnable {
    @Override
    public void run() {
        // 线程执行的代码
    }
}

public static void main(String[] args) {
    ExecutorService executor = Executors.newFixedThreadPool(10);  // 创建固定大小的线程池
    for (int i = 0; i < 100; i++) {
        executor.submit(new Task());  // 提交任务到线程池执行
    }
    executor.shutdown();  // 关闭线程池
}

采用线程池方式:

  • 缺点:程池增加了程序的复杂度,特别是当涉及线程池参数调整和故障排查时。错误的配置可能导致死锁、资源耗尽等问题,这些问题的诊断和修复可能较为复杂。
  • 优点:线程池可以重用预先创建的线程,避免了线程创建和销毁的开销,显著提高了程序的性能。对于需要快速响应的并发请求,线程池可以迅速提供线程来处理任务,减少等待时间。并且,线程池能够有效控制运行的线程数量,防止因创建过多线程导致的系统资源耗尽(如内存溢出)。通过合理配置线程池大小,可以最大化CPU利用率和系统吞吐量。

怎么启动线程 ?

启动线程的通过Thread类的start()

//创建两个线程,用start启动线程
MyThread myThread1 = new MyThread();  
MyThread myThread2 = new MyThread();  
myThread1.start();  
myThread2.start();  

怎么保证多线程安全?

  • synchronized关键字:可以使用synchronized关键字来同步代码块或方法,确保同一时刻只有一个线程可以访问这些代码。对象锁是通过synchronized关键字锁定对象的监视器(monitor)来实现的。
public synchronized void someMethod() { /* ... */ }

public void anotherMethod() {
    synchronized (someObject) {
        /* ... */
    }
}
  • volatile关键字:volatile关键字用于变量,确保所有线程看到的是该变量的最新值,而不是可能存储在本地寄存器中的副本。
public volatile int sharedVariable;
  • Lock接口和ReentrantLock类:java.util.concurrent.locks.Lock接口提供了比synchronized更强大的锁定机制,ReentrantLock是一个实现该接口的例子,提供了更灵活的锁管理和更高的性能。
private final ReentrantLock lock = new ReentrantLock();

public void someMethod() {
    lock.lock();
    try {
        /* ... */
    } finally {
        lock.unlock();
    }
}
  • 原子类:Java并发库(java.util.concurrent.atomic)提供了原子类,如AtomicIntegerAtomicLong等,这些类提供了原子操作,可以用于更新基本类型的变量而无需额外的同步。

示例:

AtomicInteger counter = new AtomicInteger(0);

int newValue = counter.incrementAndGet();

Java中有哪些常用的锁,在什么场景下使用?

ava中的锁是用于管理多线程并发访问共享资源的关键机制。锁可以确保在任意给定时间内只有一个线程可以访问特定的资源,从而避免数据竞争和不一致性。Java提供了多种锁机制,可以分为以下几类:

  • 读写锁(ReadWriteLock)java.util.concurrent.locks.ReadWriteLock接口定义了一种锁,允许多个读取者同时访问共享资源,但只允许一个写入者。读写锁通常用于读取远多于写入的情况,以提高并发性。
  • 乐观锁和悲观锁:悲观锁(Pessimistic Locking)通常指在访问数据前就锁定资源,假设最坏的情况,即数据很可能被其他线程修改。synchronizedReentrantLock都是悲观锁的例子。乐观锁(Optimistic Locking)通常不锁定资源,而是在更新数据时检查数据是否已被其他线程修改。乐观锁常使用版本号或时间戳来实现

blocked和waiting有啥区别

  • 触发条件:线程进入BLOCKED状态通常是因为试图获取一个对象的锁(monitor lock),但该锁已经被另一个线程持有。这通常发生在尝试进入synchronized块或方法时,如果锁已被占用,则线程将被阻塞直到锁可用。线程进入WAITING状态是因为它正在等待另一个线程执行某些操作,例如调用Object.wait()方法、Thread.join()方法或LockSupport.park()方法。在这种状态下,线程将不会消耗CPU资源,并且不会参与锁的竞争。
  • 唤醒机制:当一个线程被阻塞等待锁时,一旦锁被释放,线程将有机会重新尝试获取锁。如果锁此时未被其他线程获取,那么线程可以从BLOCKED状态变为RUNNABLE状态。线程在WAITING状态中需要被显式唤醒。例如,如果线程调用了Object.wait(),那么它必须等待另一个线程调用同一对象上的Object.notify()或Object.notifyAll()方法才能被唤醒。

notify 和 notifyAll 的区别?

同样是唤醒等待的线程,同样最多只有一个线程能获得锁,同样不能控制哪个线程获得锁。

区别在于:

  • notify:唤醒一个线程,其他线程依然处于wait的等待唤醒状态,如果被唤醒的线程结束时没调用notify,其他线程就永远没人去唤醒,只能等待超时,或者被中断
  • notifyAll:所有线程退出wait的状态,开始竞争锁,但只有一个线程能抢到,这个线程执行完后,其他线程又会有一个幸运儿脱颖而出得到锁

3.JMM是什么

JMM是java内存模型,是 Java 定义的并发编程相关的一组规范。并发编程下,像 CPU 多级缓存和指令重排这类设计可能会导致程序运行出现一些问题,主要的三个问题:『可见性问题』、『原子性问题』、『有序性问题』。如果从更深层次看这三个问题,其实就是上面讲的『缓存一致性』、『处理器优化』、『指令重排序』造成的。所以我们需要JMM ,内存模型解决并发问题主要采用两种方式:限制处理器优化使用内存屏障

1.CPU多级缓存模型

是CPU多级缓存模型,内存中的数据就先被读进缓存中,CPU直接处理缓存中的数据,再写回内存,在多线程的背景下,存在内存缓存不一致的情况。(一个cpu把内存的数据改了,另一个cpu还用之前的数据)

为解决这一问题,使用volatile关键字修饰的共享变量,在数据修改后,将修改后的数据立即写回
系统内存,并且写回操作会开启MESI缓存一致性协议,其他CPU通过总线嗅探机制感知数据变化
更新缓存中的数据

2.处理器优化和指令重排序

为了提升性能在 CPU 和主内存之间增加了高速缓存,但在多线程并发场景可能会遇到缓存一致性问题。那还有没有办法进一步提升 CPU 的执行效率呢?答案是:处理器优化。

为了使处理器内部的运算单元能够最大化被充分利用,处理器会对输入代码进行乱序执行处理,这就是处理器优化。

除了处理器会对代码进行优化处理,很多现代编程语言的编译器也会做类似的优化,比如像 Java 的即时编译器(JIT)会做指令重排序。

处理器优化其实也是重排序的一种类型,这里总结一下,重排序可以分为三种类型:

  • 编译器优化的重排序。编译器在不改变单线程程序语义放入前提下,可以重新安排语句的执行顺序。
  • 指令级并行的重排序。现代处理器采用了指令级并行技术来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。
  • 内存系统的重排序。由于处理器使用缓存和读写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。

注:Java 内存区域和 JMM 有何区别?

这是一个比较常见的问题,很多初学者非常容易搞混。 Java 内存区域和内存模型是完全不一样的两个东西

  • JVM 内存结构和 Java 虚拟机的运行时区域相关,定义了 JVM 在运行时如何分区存储程序数据,就比如说堆主要用于存放对象实例。
  • Java 内存模型和 Java 的并发编程相关,抽象了线程和主内存之间的关系就比如说线程之间的共享变量必须存储在主内存中,规定了从 Java 源代码到 CPU 可执行指令的这个转化过程要遵守哪些和并发相关的原则和规范,其主要目的是为了简化多线程编程,增强程序可移植性的

JMM定义了什么规则:

  • 所有的变量都存储在主内存(Main Memory)中。
  • 每个线程都有一个私有的本地内存(Local Memory),本地内存中存储了该线程以读/写共享变量的拷贝副本。
  • 线程对变量的所有操作都必须在本地内存中进行,而不能直接读写主内存。
  • 不同的线程之间无法直接访问对方本地内存中的变量。

3.解决指令重排序

JMM 抽象了 happens-before 原则(后文会详细介绍到)来解决这个指令重排序问题。

happens-before 原则表达的意义其实并不是一个操作发生在另外一个操作的前面,虽然这从程序员的角度上来说也并无大碍。更准确地来说,它更想表达的意义是前一个操作的结果对于后一个操作是可见的,无论这两个操作是否在同一个线程里。

happens-before 常见规则有哪些?谈谈你的理解?

常见规则:

  • 程序顺序规则:一个线程内,按照代码顺序,书写在前面的操作 happens-before 于书写在后面的操作;
  • 解锁规则:解锁 happens-before 于加锁;
  • volatile 变量规则:对一个 volatile 变量的写操作 happens-before 于后面对这个 volatile 变量的读操作。说白了就是对 volatile 变量的写操作的结果对于发生于其后的任何操作都是可见的。
  • 传递规则:如果 A happens-before B,且 B happens-before C,那么 A happens-before C;
  • 线程启动规则:Thread 对象的 start()方法 happens-before 于此线程的每一个动作。

4.解决缓存不一致

volatile 关键字可以保证变量的可见性

如果我们将一个变量使用 volatile 修饰,这就指示 编译器,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。

5.violate的作用

1.内存可见性:使用volatile关键字修饰的变量,确保了每次读取(read)操作都能获取到最新的值。具体来说,当一个线程修改了volatile变量,新的值会立即被刷新到主内存。其他线程在读取该volatile变量时,将直接从主内存中获取最新值,而不是从线程的本地内存(缓存)中获取。这保证了内存的可见性问题。

2.禁止指令重排序:用内存屏障,

在Java内存模型中,volatile变量的读写操作会分别插入特定的内存屏障:

  • 写 volatile 变量时:在写操作之后插入一个写屏障(Store Barrier)。这保证了在写volatile变量之前的所有写操作都能在该volatile写操作之前完成,并且确保此volatile写操作之后的写操作不会被重排序到其之前。

  • 读 volatile 变量时:在读操作之前插入一个读屏障(Load Barrier)。这保证了在读volatile变量之后的所有读操作都能在该volatile读操作之后完成,并且确保此volatile读操作之前的读操作不会被重排序到其之后。

volatile int能用作计数器吗?

不能,volatile 主要保证 可见性和有序性,但 不保证原子性

如果想要实现这样的计数器,可以怎么做

atomic的AtomicInteger。

AtomicInteger的底层实现?

AtomicInteger 在 Java 中的底层实现主要依赖于 CAS(Compare-And-Swap)volatile 变量,确保 无锁 的原子操作。

6.volatile的底层原理:

有序性:在 JVM 底层,volatile 是通过内存屏障来实现的。内存屏障提供了以下功能:1.确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面2.强制将对缓存的修改操作立即写入主存
可见性:可以发现通过volatile修饰的变量,生成汇编指令时会比普通的变量多出一个Lock指令,这个Lock指令就是volatile关键字可以保证内存可见性的关键,它主要有两个作用:1.将当前处理器缓存的数据刷新到主内存。2.刷新到主内存时会使得其他处理器缓存的该内存地址的数据无效。

4.乐观锁和悲观锁

1.定义:CAS和版本号,时间戳只是实现乐观锁的方法,只有乐观悲观锁和synchronized和reentrantlock同级别

悲观锁:悲观锁总是假设最坏的情况,认为共享资源每次被访问的时候就会出现问题(比如共享数据被修改),所以每次在获取资源操作的时候都会上锁,这样其他线程想拿到这个资源就会阻塞直到锁被上一个持有者释放。也就是说,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程

乐观锁:乐观锁总是假设最好的情况,认为共享资源每次被访问的时候不会出现问题,线程可以不停地执行,无需加锁也无需等待,只是在提交修改的时候去验证对应的资源(也就是数据)是否被其它线程修改了(具体方法可以使用版本号机制或 CAS 算法)。

2.如何实现乐观锁:版本号机制CAS 算法

1.版本号机制:

一般是在数据表中加上一个数据版本号 version 字段,表示数据被修改的次数。当数据被修改时,version 值会加一。当线程 A 要更新数据值时,在读取数据的同时也会读取 version 值,在提交更新时,若刚才读取到的 version 值为当前数据库中的 version 值相等时才更新,否则重试更新操作,直到更新成功。

example:

举一个简单的例子:假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。

  1. 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。
  2. 在操作员 A 操作的过程中,操作员 B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 $20 ( $100-$20 )。
  3. 操作员 A 完成了修改工作,将数据版本号( version=1 ),连同帐户扣除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本等于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。
  4. 操作员 B 完成了操作,也将版本号( version=1 )试图向数据库提交数据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数据版本号为 1 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须等于当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。

2.CAS算法:自旋是因为修改失败(ABA等问题)

实现 CAS(Compare-And-Swap, 比较并交换)操作的一个关键类是Unsafe

CAS 涉及到三个操作数:

  • V:要更新的变量值(Var)
  • E:预期值(Expected)
  • N:拟写入的新值(New)

当且仅当 V 的值等于 E 时,CAS 通过原子方式用新值 N 来更新 V 的值。如果不等,说明已经有其它线程更新了 V,则当前线程放弃更新。

举一个简单的例子:线程 A 要修改变量 i 的值为 6,i 原值为 1(V = 1,E=1,N=6,假设不存在 ABA 问题)。

  1. i 与 1 进行比较,如果相等, 则说明没被其他线程修改,可以被设置为 6 。
  2. i 与 1 进行比较,如果不相等,则说明被其他线程修改,当前线程放弃更新,CAS 操作失败。

CAS 算法存在哪些问题?

CAS的自旋锁机制:

getAndAddInt 使用了 do-while 循环:在compareAndSwapInt操作失败时,会不断重试直到成功。也就是说,getAndAddInt方法会通过 compareAndSwapInt 方法来尝试更新 value 的值,如果更新失败(当前值在此期间被其他线程修改),它会重新获取当前值并再次尝试更新,直到操作成功。

由于 CAS 操作可能会因为并发冲突而失败,因此通常会与while循环搭配使用,在失败后不断重试,直到操作成功。这就是 自旋锁机制 

ABA问题:

如果一个变量 V 初次读取的时候是 A 值,并且在准备赋值的时候检查到它仍然是 A 值,那我们就能说明它的值没有被其他线程修改过了吗?很明显是不能的,因为在这段时间它的值可能被改为其他值,然后又改回 A,那 CAS 操作就会误认为它从来没有被修改过。这个问题被称为 CAS 操作的 "ABA"问题。

ABA 问题的解决思路是在变量前面追加上版本号或者时间戳。JDK 1.5 以后的 AtomicStampedReference 类就是用来解决 ABA 问题的,其中的 compareAndSet() 方法就是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

循环时间开销大

CAS 经常会用到自旋操作来进行重试,也就是不成功就一直循环执行直到成功。如果长时间不成功,会给 CPU 带来非常大的执行开销。

如果 JVM 能够支持处理器提供的pause指令,那么自旋操作的效率将有所提升。pause指令有两个重要作用:

  1. 延迟流水线执行指令pause指令可以延迟指令的执行,从而减少 CPU 的资源消耗。具体的延迟时间取决于处理器的实现版本,在某些处理器上,延迟时间可能为零。
  2. 避免内存顺序冲突:在退出循环时,pause指令可以避免由于内存顺序冲突而导致的 CPU 流水线被清空,从而提高 CPU 的执行效率。

5.synchronized 关键字(锁锁的是共享资源,锁的是方法,对象,常量)

xin可ring赖兹

1.作用:

  synchronized 是 Java 中的一个关键字,翻译成中文是同步的意思,主要解决的是多个线程之间访问资源的同步性,可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。

2. synchronized 的底层实现原理:

synchronized 同步语句块的实现使用的是 monitorentermonitorexit 指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。

代码块的同步是利用monitorenter和monitorexit这两个字节码指令。它们分别位于同步代码块的开始和结束位置。当jvm执行到monitorenter指令时,当前线程试图获取monitor对象的所有权,如果未加锁或者已经被当前线程所持有,就把锁的计数器+1;当执行monitorexit指令时,锁计数器-1;当锁计数器为0时,该锁就被释放了。如果获取monitor对象失败,该线程则会进入阻塞状态,直到其他线程释放锁。

entrylist里面的线程处于blocked,waitset里面线程处于wait

如果再深入到源码来说,synchronized实际上有两个队列waitSet(waitset是用来放释放锁的对象,他们释放锁的时候会调用wait方法)和entryList(存储等待锁的对象8)。

  1. 当多个线程进入同步代码块时,首先进入entryList
  2. 有一个线程获取到monitor锁后,就赋值给当前线程,并且计数器+1
  3. 如果线程调用wait方法,将释放锁,当前线程置为null,计数器-1,同时进入waitSet等待被唤醒,调用notify或者notifyAll之后又会进入entryList竞争锁
  4. 如果线程执行完毕,同样释放锁,计数器-1,当前线程置为null

3. synchronized 支持重入吗?如何实现的?

synchronized是基于原子性的内部锁机制,是可重入的,因此在一个线程调用synchronized方法的同时在其方法体内部调用该对象另一个synchronized方法,也就是说一个线程得到一个对象锁后再次请求该对象锁,是允许的,这就是synchronized的可重入性。

synchronized底层是利用计算机系统mutex Lock实现的。每一个可重入锁都会关联一个线程ID和一个锁状态status。

当一个线程请求方法时,会去检查锁状态。

  1. 如果锁状态是0,代表该锁没有被占用,使用CAS操作获取锁,将线程ID替换成自己的线程ID。
  2. 如果锁状态不是0,代表有线程在访问该方法。此时,如果线程ID是自己的线程ID,如果是可重入锁,会将status自增1,然后获取到该锁,进而执行相应的方法;如果是非重入锁,就会进入阻塞队列等待。

在释放锁时,

  1. 如果是可重入锁的,每一次退出方法,就会将status减1,直至status的值为0,最后释放该锁。
  2. 如果非可重入锁的,线程退出方法,直接就会释放该锁。

4.syncronized锁升级的过程讲一下

具体的锁升级的过程是:无锁->偏向锁->轻量级锁->重量级锁

  • 无锁:这是没有开启偏向锁的时候的状态,在JDK1.6之后偏向锁的默认开启的,但是有一个偏向延迟,需要在JVM启动之后的多少秒之后才能开启,这个可以通过JVM参数进行设置,同时是否开启偏向锁也可以通过JVM参数设置。
  • 偏向锁:这个是在偏向锁开启之后的锁的状态,如果还没有一个线程拿到这个锁的话,这个状态叫做匿名偏向,当一个线程拿到偏向锁的时候,下次想要竞争锁只需要拿线程ID跟MarkWord当中存储的线程ID进行比较,如果线程ID相同则直接获取锁(相当于锁偏向于这个线程),不需要进行CAS操作和将线程挂起的操作。
  • 轻量级锁:在这个状态下线程主要是通过CAS操作实现的。将对象的MarkWord存储到线程的虚拟机栈上,然后通过CAS将对象的MarkWord的内容设置为指向Displaced Mark Word的指针,如果设置成功则获取锁。在线程出临界区的时候,也需要使用CAS,如果使用CAS替换成功则同步成功,如果失败表示有其他线程在获取锁,那么就需要在释放锁之后将被挂起的线程唤醒。
  • 重量级锁:当有两个以上的线程获取锁的时候轻量级锁就会升级为重量级锁,因为CAS如果没有成功的话始终都在自旋,进行while循环操作,这是非常消耗CPU的,但是在升级为重量级锁之后,线程会被操作系统调度然后挂起,这可以节约CPU资源。当有线程自旋重试次数达到一定限度,我们认为锁竞争非常激烈,将其升级为重量级锁

了解完 4 种锁状态之后,我们就可以整体的来看一下锁升级的过程了。

线程A进入 synchronized 开始抢锁,JVM 会判断当前是否是偏向锁的状态,如果是就会根据 Mark Word 中存储的线程 ID 来判断,当前线程A是否就是持有偏向锁的线程。如果是,则忽略 check,线程A直接执行临界区内的代码。

5.如何使用 synchronized?

synchronized 关键字的使用方式主要有下面 3 种:

  1. 修饰实例方法
  2. 修饰静态方法
  3. 修饰代码块

1、修饰实例方法 (锁当前对象实例)

给当前对象实例加锁,进入同步代码前要获得 当前对象实例的锁

synchronized void method() {
    //业务代码
}

2、修饰静态方法 (锁当前类)

给当前类加锁,会作用于类的所有对象实例 ,进入同步代码前要获得 当前 class 的锁

这是因为静态成员不属于任何一个实例对象,归整个类所有,不依赖于类的特定实例,被类的所有实例共享。

synchronized static void method() {
    //业务代码
}

静态 synchronized 方法和非静态 synchronized 方法之间的调用互斥么?不互斥!如果一个线程 A 调用一个实例对象的非静态 synchronized 方法,而线程 B 需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。

3、修饰代码块 (锁指定对象/类)

对括号里指定的对象/类加锁:

  • synchronized(object) 表示进入同步代码库前要获得 给定对象的锁
  • synchronized(类.class) 表示进入同步代码前要获得 给定 Class 的锁

synchronized(this) {
    //业务代码
}

总结:

  • synchronized 关键字加到 static 静态方法和 synchronized(class) 代码块上都是是给 Class 类上锁;
  • synchronized 关键字加到实例方法上是给对象实例上锁;
  • 尽量不要使用 synchronized(String a) 因为 JVM 中,字符串常量池具有缓存功能。

6.synchronized锁普通方法和锁静态方法的区别

synchronized 关键字在 Java 中用于同步对象,以避免多个线程同时访问同一对象或方法时产生并发问题。synchronized 可以应用于方法或代码块。锁普通方法和锁静态方法之间有一些重要的区别,具体如下:

1. 锁普通方法(实例方法)

当在普通实例方法上使用 synchronized 关键字时,锁对象是调用该方法的实例对象(this)。不同的实例对象之间不会互相影响,每个不同的实例对象拥有自己的锁。

public class MyClass {

    public synchronized void instanceMethod() {
        // critical section
    }
}

在上述代码中,instanceMethod 是一个同步方法。当线程 T1 调用 instanceMethod 时,它会锁定当前实例对象 this。其他线程必须等待 T1 释放锁后,才能调用这个实例的同步方法(无论是同一个方法还是其他同步方法)。

2. 锁静态方法

当在静态方法上使用 synchronized 关键字时,锁对象是这个类的 Class 对象,而不是实例对象。无论创建了多少个实例,它们共享同一个 Class 锁。

public class MyClass {

    public static synchronized void staticMethod() {
        // critical section
    }
}

在上述代码中,staticMethod 是一个静态同步方法。当线程 T1 调用 staticMethod 时,它会锁定 MyClass 的 Class 对象。其他线程必须等待 T1 释放锁后,才能调用这个类的静态同步方法(无论是同一个方法还是其他静态同步方法)。

6.ReentrantLock

ring踹可lock

1.定义:

ReentrantLock 实现了 Lock 接口,是一个可重入且独占式的锁,和 synchronized 关键字类似。不过,ReentrantLock 更灵活、更强大,增加了轮询、超时、中断、公平锁和非公平锁等高级功能。

ReentrantLock 里面有一个内部类 SyncSync 继承 AQS(AbstractQueuedSynchronizer),添加锁和释放锁的大部分操作实际上都是在 Sync 中实现的。Sync 有公平锁 FairSync 和非公平锁 NonfairSync 两个子类。

从上面的内容可以看出, ReentrantLock 的底层就是由 AQS 来实现的。关于 AQS 的相关内容推荐阅读 AQS 详解 这篇文章。

2.synchronized 和 ReentrantLock 有什么区别?

两者都是可重入锁

可重入锁 也叫递归锁,指的是线程可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果是不可重入锁的话,就会造成死锁。

JDK 提供的所有现成的 Lock 实现类,包括 synchronized 关键字锁都是可重入的。

在下面的代码中,method1()method2()都被 synchronized 关键字修饰,method1()调用了method2()

由于 synchronized锁是可重入的,同一个线程在调用method1() 时可以直接获得当前对象的锁,执行 method2() 的时候可以再次获取这个对象的锁,不会产生死锁问题。假如synchronized是不可重入锁的话,由于该对象的锁已被当前线程所持有且无法释放,这就导致线程在执行 method2()时获取锁失败,会出现死锁问题。

synchronized 依赖于 JVM 而 ReentrantLock 依赖于 API

synchronized 是依赖于 JVM 实现的,前面我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized 关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。

ReentrantLock 是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合 try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。

ReentrantLock 比 synchronized 增加了一些高级功能

相比synchronizedReentrantLock增加了一些高级功能。主要来说主要有三点:

  • 等待可中断 : ReentrantLock提供了一种能够中断等待锁的线程的机制,通过 lock.lockInterruptibly() 来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。
  • 可实现公平锁 : ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。ReentrantLock默认情况是非公平的,可以通过 ReentrantLock类的ReentrantLock(boolean fair)构造方法来指定是否是公平的。
  • 可实现选择性通知(锁可以绑定多个条件): synchronized关键字与wait()notify()/notifyAll()方法相结合可以实现等待/通知机制。ReentrantLock类当然也可以实现,但是需要借助于Condition接口与newCondition()方法。

乐观锁,synchronized 和 ReentrantLock这些关键字保证多线程的原子性

7.介绍一下AQS

AQS全称为AbstractQueuedSynchronizer,是Java中的一个抽象类。 AQS是一个用于构建锁、同步器、协作工具类的工具类(框架)。

AQS最核心的就是三大部分:

  • 状态:state;
  • 控制线程抢锁和配合的FIFO队列(双向链表);
  • 期望协作工具类去实现的获取/释放等重要方法(重写)。
  1. 队列机制:AQS内部维护了一个队列,当多个线程来争抢锁时,没得到锁的线程会被放到这个等待队列里。

  2. 状态管理:AQS通过一个int类型的变量来表示锁的状态,比如0表示锁是空闲的,大于0表示锁是被占用的。

  3. 独占和共享模式:AQS支持两种模式:

    • 独占模式:只有一个线程能拿到锁(比如ReentrantLock)。
    • 共享模式:多个线程可以共享同一个锁(比如Semaphore)。
  4. 模板方法:AQS本身不直接实现锁逻辑,而是提供一套机制,具体的锁行为由你继承它并实现一些抽象方法来确定。

CountDownLatch 有什么用?

CountDownLatch 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。

CountDownLatch 是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当 CountDownLatch 使用完毕后,它不能再次被使用。

CountDownLatch 的原理是什么?

CountDownLatch 是共享锁的一种实现,它默认构造 AQS 的 state 值为 count。当线程使用 countDown() 方法时,其实使用了tryReleaseShared方法以 CAS 的操作来减少 state,直至 state 为 0 。当调用 await() 方法的时候,如果 state 不为 0,那就证明任务还没有执行完毕,await() 方法就会一直阻塞,也就是说 await() 方法之后的语句不会被执行。直到count 个线程调用了countDown()使 state 值被减为 0,或者调用await()的线程被中断,该线程才会从阻塞中被唤醒,await() 方法之后的语句得到执行。

用过 CountDownLatch 么?什么场景下用的?

CountDownLatch 的作用就是 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。之前在项目中,有一个使用多线程读取多个文件处理的场景,我用到了 CountDownLatch 。具体场景是下面这样的:

我们要读取处理 6 个文件,这 6 个任务都是没有执行顺序依赖的任务,但是我们需要返回给用户的时候将这几个文件的处理的结果进行统计整理。

为此我们定义了一个线程池和 count 为 6 的CountDownLatch对象 。使用线程池处理读取任务,每一个线程处理完之后就将 count-1,调用CountDownLatch对象的 await()方法,直到所有文件读取完之后,才会接着执行后面的逻辑。

伪代码是下面这样的:

public class CountDownLatchExample1 {
    // 处理文件的数量
    private static final int threadCount = 6;

    public static void main(String[] args) throws InterruptedException {
        // 创建一个具有固定线程数量的线程池对象(推荐使用构造方法创建)
        ExecutorService threadPool = Executors.newFixedThreadPool(10);
        final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
        for (int i = 0; i < threadCount; i++) {
            final int threadnum = i;
            threadPool.execute(() -> {
                try {
                    //处理文件的业务操作
                    //......
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    //表示一个文件已经被完成
                    countDownLatch.countDown();
                }

            });
        }
        countDownLatch.await();
        threadPool.shutdown();
        System.out.println("finish");
    }
}

8.Future

Future 类有什么用?

Future 类是异步思想的典型运用,主要用在一些需要执行耗时任务的场景,避免程序一直原地等待耗时任务执行完成,执行效率太低。具体来说是这样的:当我们执行某一耗时的任务时,可以将这个耗时任务交给一个子线程去异步执行,同时我们可以干点其他事情,不用傻傻等待耗时任务执行完成。等我们的事情干完后,我们再通过 Future 类获取到耗时任务的执行结果。这样一来,程序的执行效率就明显提高了。

这其实就是多线程中经典的 Future 模式,你可以将其看作是一种设计模式,核心思想是异步调用,主要用在多线程领域,并非 Java 语言独有。

在 Java 中,Future 类只是一个泛型接口,位于 java.util.concurrent 包下,其中定义了 5 个方法,主要包括下面这 4 个功能:

  • 取消任务;
  • 判断任务是否被取消;
  • 判断任务是否已经执行完成;
  • 获取任务执行结果。
// V 代表了Future执行的任务返回值的类型
public interface Future<V> {
    // 取消任务执行
    // 成功取消返回 true,否则返回 false
    boolean cancel(boolean mayInterruptIfRunning);
    // 判断任务是否被取消
    boolean isCancelled();
    // 判断任务是否已经执行完成
    boolean isDone();
    // 获取任务执行结果
    V get() throws InterruptedException, ExecutionException;
    // 指定时间内没有返回计算结果就抛出 TimeOutException 异常
    V get(long timeout, TimeUnit unit)

        throws InterruptedException, ExecutionException, TimeoutExceptio

}

简单理解就是:我有一个任务,提交给了 Future 来处理。任务执行期间我自己可以去做任何想做的事情。并且,在这期间我还可以取消任务以及获取任务的执行状态。一段时间之后,我就可以 Future 那里直接取出任务执行结果。

Callable 和 Future 有什么关系?

我们可以通过 FutureTask 来理解 Callable 和 Future 之间的关系。

FutureTask 提供了 Future 接口的基本实现,常用来封装 Callable 和 Runnable,具有取消任务、查看任务是否执行完成以及获取任务执行结果的方法。ExecutorService.submit() 方法返回的其实就是 Future 的实现类 FutureTask 。

<T> Future<T> submit(Callable<T> task);
Future<?> submit(Runnable task);

FutureTask 不光实现了 Future接口,还实现了Runnable 接口,因此可以作为任务直接被线程执行。

FutureTask 有两个构造函数,可传入 Callable 或者 Runnable 对象。实际上,传入 Runnable 对象也会在方法内部转换为Callable 对象。

public FutureTask(Callable<V> callable) {
    if (callable == null)
        throw new NullPointerException();
    this.callable = callable;
    this.state = NEW;
}
public FutureTask(Runnable runnable, V result) {
    // 通过适配器RunnableAdapter来将Runnable对象runnable转换成Callable对象
    this.callable = Executors.callable(runnable, result);
    this.state = NEW;
}

FutureTask相当于对Callable 进行了封装,管理着任务执行的情况,存储了 Callable 的 call 方法的任务执行结果。

CompletableFuture 类有什么用?

Future 在实际使用过程中存在一些局限性比如不支持异步任务的编排组合、获取计算结果的 get() 方法为阻塞调用。

Java 8 才被引入CompletableFuture 类可以解决Future 的这些缺陷。CompletableFuture 除了提供了更为好用和强大的 Future 特性之外,还提供了函数式编程、异步任务编排组合(可以将多个异步任务串联起来,组成一个完整的链式调用)等能力。

下面我们来简单看看 CompletableFuture 类的定义。

public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
}

可以看到,CompletableFuture 同时实现了 Future 和 CompletionStage 接口。

CompletionStage 接口描述了一个异步计算的阶段。很多计算可以分成多个阶段或步骤,此时可以通过它将所有步骤组合起来,形成异步计算的流水线。

CompletionStage 接口中的方法比较多,CompletableFuture 的函数式能力就是这个接口赋予的。从这个接口的方法参数你就可以发现其大量使用了 Java8 引入的函数式编程。

//7.Atomic 原子类

补充:什么是线程安全

线程安全是指在多线程环境下,当多个线程访问某个类(对象或方法)时,这个类始终能表现出正确的行为。换句话说,一个线程安全的对象或方法在多线程同时使用时,不会因为线程调度或者时间上的重叠而出现数据竞争或者不一致的情况。

Atomic原子类在计算机编程中是一组用于在多线程编程环境中安全地访问和修改共享变量的工具。在Java和C++等编程语言中,Atomic类提供了一种实现无锁编程的机制,这比传统的锁机制如synchronizedLock更高效

1、基本类型

使用原子的方式更新基本类型

  • AtomicInteger:整型原子类
  • AtomicLong:长整型原子类
  • AtomicBoolean:布尔型原子类

2、数组类型

使用原子的方式更新数组里的某个元素

  • AtomicIntegerArray:整型数组原子类
  • AtomicLongArray:长整型数组原子类
  • AtomicReferenceArray:引用类型数组原子类

3、引用类型

  • AtomicReference:引用类型原子类
  • AtomicMarkableReference:原子更新带有标记的引用类型。该类将 boolean 标记与引用关联起来,也可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题
  • AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于解决原子的更新数据和数据的版本号,可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。

🐛 修正(参见:issue#626 : AtomicMarkableReference 不能解决 ABA 问题。

4、对象的属性修改类型

  • AtomicIntegerFieldUpdater:原子更新整型字段的更新器
  • AtomicLongFieldUpdater:原子更新长整型字段的更新器
  • AtomicReferenceFieldUpdater:原子更新引用类型里的字段

8.线程池

1.什么是线程池,为什么用它

线程池就是管理一系列线程的资源池。当有任务要处理时,直接从线程池中获取线程来处理,处理完之后线程并不会立即被销毁,而是等待下一个任务。

好处:

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

2.如何创建线程池

方式一:通过ThreadPoolExecutor构造函数来创建(推荐)。

方式二:通过 Executor 框架的工具类 Executors 来创建。

为什么不推荐内置线程池Executors 

  • FixedThreadPoolSingleThreadExecutor:使用的是有界阻塞队列是 LinkedBlockingQueue ,其任务队列的最大长度为 Integer.MAX_VALUE ,可能堆积大量的请求,从而导致 OOM。
  • CachedThreadPool:使用的是同步队列 SynchronousQueue, 允许创建的线程数量为 Integer.MAX_VALUE ,如果任务数量过多且执行速度较慢,可能会创建大量的线程,从而导致 OOM。
  • ScheduledThreadPoolSingleThreadScheduledExecutor :使用的无界的延迟阻塞队列 DelayedWorkQueue ,任务队列最大长度为 Integer.MAX_VALUE ,可能堆积大量的请求,从而导致 OOM。

3.线程池的类型和优缺点:可固定单(身)

 

4.线程池常见参数

ThreadPoolExecutor 3 个最重要的参数:

  • corePoolSize(核心线程数) :

    线程池维护的最小线程数量,核心线程创建后不会被回收(注意:设置allowCoreThreadTimeout=true后,空闲的核心线程超过存活时间也会被回收)。大于核心线程数的线程,在空闲时间超过keepAliveTime后会被回收。

    任务队列未达到队列容量时,最大可以同时运行的线程数量。
  • maximumPoolSize : 线程池允许创建的最大线程数量。任务队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
  • workQueue: 新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
策略描述适用场景
AbortPolicy(默认)直接抛异常适用于不允许丢失任务的关键业务,如支付
CallerRunsPolicy由调用线程执行任务适用于小流量场景,减轻线程池负担
DiscardPolicy丢弃新任务,不抛异常适用于允许丢失部分任务的场景
DiscardOldestPolicy丢弃最老任务,加入新任务适用于订单场景,保证最新任务被处理

ThreadPoolExecutor其他常见参数 :

  • keepAliveTime:当线程池中的线程数量大于 corePoolSize ,即有非核心线程(线程池中核心线程以外的线程)时,这些非核心线程空闲后不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁。
  • unit : keepAliveTime 参数的时间单位。
  • threadFactory :executor 创建新线程的时候会用到。
  • handler :拒绝策略(后面会单独详细介绍一下)。

 5.线程池的拒绝策略acdd 爱吃豆豆

如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,ThreadPoolExecutor 定义一些策略:

  • AbortPolicy:抛出 RejectedExecutionException来拒绝新任务的处理。
  • CallerRunsPolicy:把任务退回给调用线程,调用线程尝试执行任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果你的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。
  • DiscardPolicy:不处理新任务,直接丢弃掉。
  • DiscardOldestPolicy:此策略将丢弃最早的未处理的任务请求。

举个例子:Spring 通过 ThreadPoolTaskExecutor 或者我们直接通过 ThreadPoolExecutor 的构造函数创建线程池的时候,当我们不指定 RejectedExecutionHandler 拒绝策略来配置线程池的时候,默认使用的是 AbortPolicy。在这种拒绝策略下,如果队列满了,ThreadPoolExecutor 将抛出 RejectedExecutionException 异常来拒绝新来的任务 ,这代表你将丢失对这个任务的处理。如果不想丢弃任务的话,可以使用CallerRunsPolicyCallerRunsPolicy 和其他的几个策略不同,它既不会抛弃任务,也不会抛出异常,而是将任务回退给调用者,使用调用者的线程来执行任务。

6.线程池的执行过程和原理 

  • 如果当前运行的线程数小于核心线程数,那么就会新建一个线程来执行任务。
  • 如果当前运行的线程数等于或大于核心线程数,但是小于最大线程数,那么就把该任务放入到任务队列里等待执行。
  • 如果向任务队列投放任务失败(任务队列已经满了),但是当前运行的线程数是小于最大线程数的,就新建一个线程来执行任务。
  • 如果当前运行的线程数已经等同于最大线程数了,新建线程将会使当前运行的线程超出最大线程数,那么当前任务会被拒绝,拒绝策略会调用RejectedExecutionHandler.rejectedExecution()方法。

7.线程池的核心线程会被回收吗? 

ThreadPoolExecutor 默认不会回收核心线程,即使它们已经空闲了。这是为了减少创建线程的开销,因为核心线程通常是要长期保持活跃的。但是,如果线程池是被用于周期性使用的场景,且频率不高(周期之间有明显的空闲时间),可以考虑将 allowCoreThreadTimeOut(boolean value) 方法的参数设置为 true,这样就会回收空闲(时间间隔由 keepAliveTime 指定)的核心线程了。

8.如何设定线程池的大小?

很多人甚至可能都会觉得把线程池配置过大一点比较好!我觉得这明显是有问题的。就拿我们生活中非常常见的一例子来说:并不是人多就能把事情做好,增加了沟通交流成本。你本来一件事情只需要 3 个人做,你硬是拉来了 6 个人,会提升做事效率嘛?我想并不会。 线程数量过多的影响也是和我们分配多少人做事情一样,对于多线程这个场景来说主要是增加了上下文切换成本。不清楚什么是上下文切换的话,可以看我下面的介绍。

类比于实现世界中的人类通过合作做某件事情,我们可以肯定的一点是线程池大小设置过大或者过小都会有问题,合适的才是最好。

  • 如果我们设置的线程池数量太小的话,如果同一时间有大量任务/请求需要处理,可能会导致大量的请求/任务在任务队列中排队等待执行,甚至会出现任务队列满了之后任务/请求无法处理的情况,或者大量任务堆积在任务队列导致 OOM。这样很明显是有问题的,CPU 根本没有得到充分利用。
  • 如果我们设置线程数量太大,大量线程可能会同时在争取 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。

有一个简单并且适用面比较广的公式:

  • CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1。比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
  • I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。

9.线程池中核心线程数 == 最大线程数,用于什么情况?

表示线程池不会创建非核心线程,适用于 固定大小的线程池(FixedThreadPool)

适用场景:

1. 任务数量稳定,不希望频繁创建/销毁线程

2. 任务执行时间长,但并发量不会突然激增

10.线程池参数、为什么有核心和最大线程数 这样两个参数

线程池的工作流程:

  1. 任务来了,优先用核心线程执行。
  2. 核心线程满了,任务进入队列。
  3. 队列也满了,创建非核心线程(最大到 maximumPoolSize)。
  4. 如果所有线程都满了,触发拒绝策略(如丢弃、异常、调用方执行等)。
  5. 空闲线程(非核心线程)超过 keepAliveTime 后被回收。

“核心线程数 vs. 最大线程数” 是为了平衡

  1. 低并发时,少用线程,节省资源。
  2. 中等并发时,利用队列缓存任务,避免频繁创建销毁线程。
  3. 高并发时,额外创建线程,提高吞吐量。
  4. 超高并发时,限制最大线程数,避免 OOM 崩溃。

线程池为什么要等阻塞队列满了之后才创建新的线程来执行

因为线程池的核心思想优先复用已有线程,减少线程创建和销毁的开销。

9.Future类

1.Future类有什么用

Future 类是异步思想的典型运用,主要用在一些需要执行耗时任务的场景,避免程序一直原地等待耗时任务执行完成,执行效率太低。具体来说是这样的:当我们执行某一耗时的任务时,可以将这个耗时任务交给一个子线程去异步执行,同时我们可以干点其他事情,不用傻傻等待耗时任务执行完成。等我们的事情干完后,我们再通过 Future 类获取到耗时任务的执行结果。这样一来,程序的执行效率就明显提高了。

简单理解就是:我有一个任务,提交给了 Future 来处理。任务执行期间我自己可以去做任何想做的事情。并且,在这期间我还可以取消任务以及获取任务的执行状态。一段时间之后,我就可以 Future 那里直接取出任务执行结果。

2.CompletableFuture 类有什么用?

Future 在实际使用过程中存在一些局限性比如不支持异步任务的编排组合、获取计算结果的 get() 方法为阻塞调用。

Java 8 才被引入CompletableFuture 类可以解决Future 的这些缺陷。CompletableFuture 除了提供了更为好用和强大的 Future 特性之外,还提供了函数式编程、异步任务编排组合(可以将多个异步任务串联起来,组成一个完整的链式调用)等能力。

3.用过CompletableFuture吗?说说你对它的理解。

面试官:用过CompletableFuture吗?_牛客网

1、任务异步化

CompletableFuture允许任务在后台线程中异步执行,不会阻塞主线程。

2、任务依赖

通过CompletableFuture提供的方法,可以方便地对任务进行链式操作,构建复杂的任务依赖关系。

3、任务并行取第一个

CompletableFuture支持多个任务的并行执行,且返回第一个最先完成的任务结果。

4、任务并行取全部

CompletableFuture支持多个任务的并行执行,等到所有结果产生后,再进行汇总计算。

5、任务回调

CompletableFuture支持某个任务执行完成后,去继续执行一个回调方法。

10.AQS

1.AQS是什么

AQS 的全称为 AbstractQueuedSynchronizer ,翻译过来的意思就是抽象队列同步器。AQS 为构建锁和同步器提供了一些通用功能的实现,因此,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 ReentrantLockSemaphore,其他的诸如 ReentrantReadWriteLockSynchronousQueue等等皆是基于 AQS 的。

2.AQS 的原理是什么?

AQS(AbstractQueuedSynchronizer)的核心思想是管理线程对共享资源的访问。如果资源空闲,当前线程获得资源并将其锁定。如果资源被占用,AQS 使用CLH队列将请求线程排队。

CLH(Craig,Landin,and Hagersten) 队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。在 CLH 同步队列中,一个节点表示一个线程,它保存着线程的引用(thread)、 当前节点在队列中的状态(waitStatus)、前驱节点(prev)、后继节点(next)。

3.Semaphore 有什么用?

synchronizedReentrantLock 都是一次只允许一个线程访问某个资源,而Semaphore(信号量)可以用来控制同时访问特定资源的线程数量。

Semaphore 的使用简单,我们这里假设有 N(N>5) 个线程来获取 Semaphore 中的共享资源,下面的代码表示同一时刻 N 个线程中只有 5 个线程能获取到共享资源,其他线程都会阻塞,只有获取到共享资源的线程才能执行。等到有线程释放了共享资源,其他阻塞的线程才能获取到。

4.Semaphore 的原理是什么?

Semaphore 是共享锁的一种实现,它默认构造 AQS 的 state 值为 permits,你可以将 permits 的值理解为许可证的数量,只有拿到许可证的线程才能执行。

5.CountDownLatch 有什么用?

CountDownLatch 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。

11.TreadLocal

1.Tread Local有什么用

通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢?

JDK 中自带的ThreadLocal类正是为了解决这样的问题。 ThreadLocal类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。

如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal变量名的由来。他们可以使用 get()set() 方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。

再举个简单的例子:两个人去宝屋收集宝物,这两个共用一个袋子的话肯定会产生争执,但是给他们两个人每个人分配一个袋子的话就不会出现这样的问题。如果把这两个人比作线程的话,那么 ThreadLocal 就是用来避免这两个线程竞争的。

并发场景下,会存在多个线程同时修改一个共享变量的场景。这就可能会出现线性安全问题。
为了解决线性安全问题,可以用加锁的方式,比如使用Synchronized 或者Lock。但是加锁的方式,可能会导致系统变慢。
还有另外一种方案,就是使用空间换时间的方式,即使用hreadLocal。使用ThreadLocal类访问共享变量时,会在每个线程的本地,都保存一份共享变量的拷贝副本。多线程对共享变量修改时,实际上操作的是这个变量副本,从而保证线性安全。

2.ThreadLocal 原理了解吗?

12.JUC

java--JUC快速入门(彻底搞懂JUC)_java juc-优快云博客

JUC是java.util.concurrent包的简称,concurrent是并发的意思

三.Redis:数据结构 线程模型 日志 事务 集群 缓存淘汰和过期删除

redis是在内存中,不存在与jvm,程序需要数据从redis读取,文件编译成.class文件放在jvm中,jvm需要时向redis通信获取数据

1.Nosql

NoSQL(Not Only SQL 的缩写)泛指非关系型的数据库,主要针对的是键值、文档以及图形类型数据存储。

NoSQL 数据库有什么优势?

 NoSQL 数据库非常适合许多现代应用程序,例如移动、Web 和游戏等应用程序,它们需要灵活、可扩展、高性能和功能强大的数据库以提供卓越的用户体验。

  • 灵活性: NoSQL 数据库通常提供灵活的架构,以实现更快速、更多的迭代开发。灵活的数据模型使 NoSQL 数据库成为半结构化和非结构化数据的理想之选。
  • 可扩展性: NoSQL 数据库通常被设计为通过使用分布式硬件集群来横向扩展,而不是通过添加昂贵和强大的服务器来纵向扩展。
  • 高性能: NoSQL 数据库针对特定的数据模型和访问模式进行了优化,这与尝试使用关系数据库完成类似功能相比可实现更高的性能。
  • 强大的功能: NoSQL 数据库提供功能强大的 API 和数据类型,专门针对其各自的数据模型而构建

2.什么是redis

RedisREmote DIctionary Server)是一个基于 C 语言开发的开源 NoSQL 数据库(BSD 许可)。与传统数据库不同的是,Redis 的数据是保存在内存中的(内存数据库,支持持久化),因此读写速度非常快

3.redis为什么那么快

Redis 内部做了非常多的性能优化,比较重要的有下面 3 点:

  1. Redis 基于内存,内存的访问速度比磁盘快很多;
  2. Redis 基于 Reactor 模式设计开发了一套高效的事件处理模型,主要是单线程事件循环和 IO 多路复用(Redis 线程模式后面会详细介绍到);
  3. Redis 内置了多种优化过后的数据类型/结构实现,性能非常高。
  4. Redis 通信协议实现简单且解析高效。

4.Redis 常用的数据类型有哪些?

Redis 中比较常见的数据类型有下面这些:

  • 5 种基础数据类型:String(字符串)、List(列表)、Set(集合)、Hash(散列)、Zset(有序集合)。
  • 3 种特殊数据类型:HyperLogLog(基数统计)、Bitmap (位图)、Geospatial (地理位置)。

除了上面提到的之外,还有一些其他的比如 Bloom filter(布隆过滤器)、Bitfield(位域)。

1.string

1.应用场景

需要存储常规数据的场景

  • 举例:缓存 Session、Token、图片地址、序列化后的对象(相比较于 Hash 存储更节省内存)。
  • 相关命令:SETGET

需要计数的场景

  • 举例:用户单位时间的请求数(简单限流可以用到)、页面单位时间的访问数。
  • 相关命令:SETGETINCRDECR

分布式锁

利用 SETNX key value 命令可以实现一个最简易的分布式锁(存在一些缺陷,通常不建议这样实现分布式锁)。

2.String 还是 Hash 存储对象数据更好呢?

简单对比一下二者:

  • 对象存储方式:String 存储的是序列化后的对象数据,存放的是整个对象,操作简单直接。Hash 是对对象的每个字段单独存储,可以获取部分字段的信息,也可以修改或者添加部分字段,节省网络流量。如果对象中某些字段需要经常变动或者经常需要单独查询对象中的个别字段信息,Hash 就非常适合。
  • 内存消耗:Hash 通常比 String 更节省内存,特别是在字段较多且字段长度较短时。Redis 对小型 Hash 进行优化(如使用 ziplist 存储),进一步降低内存占用。
  • 复杂对象存储:String 在处理多层嵌套或复杂结构的对象时更方便,因为无需处理每个字段的独立存储和操作。
  • 性能:String 的操作通常具有 O(1) 的时间复杂度,因为它存储的是整个对象,操作简单直接,整体读写的性能较好。Hash 由于需要处理多个字段的增删改查操作,在字段较多且经常变动的情况下,可能会带来额外的性能开销。

总结:

  • 在绝大多数情况下,String 更适合存储对象数据,尤其是当对象结构简单且整体读写是主要操作时。
  • 如果你需要频繁操作对象的部分字段或节省内存,Hash 可能是更好的选择。

3.String 类型内部实现

String 类型的底层的数据结构实现主要是 SDS(简单动态字符串)。 SDS 和我们认识的 C 字符串不太一样,之所以没有使用 C 语言的字符串表示,因为 SDS 相比于 C 的原生字符串:

  • SDS 不仅可以保存文本数据,还可以保存二进制数据。因为 SDS 使用 len 属性的值而不是空字符来判断字符串是否结束,并且 SDS 的所有 API 都会以处理二进制的方式来处理 SDS 存放在 buf[] 数组里的数据。所以 SDS 不光能存放文本数据,而且能保存图片、音频、视频、压缩文件这样的二进制数据。
  • SDS 获取字符串长度的时间复杂度是 O(1)。因为 C 语言的字符串并不记录自身长度,所以获取长度的复杂度为 O(n);而 SDS 结构里用 len 属性记录了字符串长度,所以复杂度为 O(1)。
  • Redis 的 SDS API 是安全的,拼接字符串不会造成缓冲区溢出。因为 SDS 在拼接字符串之前会检查 SDS 空间是否满足要求,如果空间不够会自动扩容,所以不会导致缓冲区溢出的问题。
4.购物车用string还是hash

由于购物车中的商品频繁修改和变动,购物车信息建议使用 Hash 存储:

  • 用户 id 为 key
  • 商品 id 为 field,商品数量为 value

Hash维护简单的购物车信息

Hash维护简单的购物车信息

那用户购物车信息的维护具体应该怎么操作呢?

  • 用户添加商品就是往 Hash 里面增加新的 field 与 value;
  • 查询购物车信息就是遍历对应的 Hash;
  • 更改商品数量直接修改对应的 value 值(直接 set 或者做运算皆可);
  • 删除商品就是删除 Hash 中对应的 field;
  • 清空购物车直接删除对应的 key 即可。

这里只是以业务比较简单的购物车场景举例,实际电商场景下,field 只保存一个商品 id 是没办法满足需求的。

2.list 队列

Redis 中的 List 其实就是链表数据结构的实现。

1.应用场景

信息流展示

  • 举例:最新文章、最新动态。
  • 相关命令:LPUSHLRANGE

消息队列

List 可以用来做消息队列,只是功能过于简单且存在很多缺陷,不建议这样做。

2.内部实现

List 类型的底层数据结构是由双向链表或压缩列表实现的

3.Hash

Redis 中的 Hash 是一个 String 类型的 field-value(键值对) 的映射表,特别适合用于存储对象,后续操作的时候,你可以直接修改这个对象中的某些字段的值。

1.应用场景

对象数据存储场景

  • 举例:用户信息、商品信息、文章信息、购物车信息。
  • 相关命令:HSET (设置单个字段的值)、HMSET(设置多个字段的值)、HGET(获取单个字段的值)、HMGET(获取多个字段的值)。
2.内部实现

Hash 类型的底层数据结构是由压缩列表或哈希表实现的:

3.redis的hash和java里面的hash的区别:

比较项Redis HashJava Hash(如 HashMap
存储位置存储在内存(持久化可选),属于 数据库级 存储存储在 JVM 堆内存,属于 应用级 数据结构
数据结构字典(Dict),底层由 ziplist(压缩列表)或 hashtable(哈希表) 实现哈希表(数组 + 链表/红黑树)
数据类型Key-Value 存储,Value 也是 Key-Value 结构对象-对象映射
持久化支持 RDB / AOF 持久化,可以存储到磁盘不支持持久

redis里面hash是单线程(redis是单线程模型),线程安全 但是java不是,需要锁机制

4.set 集合

Redis 中的 Set 类型是一种无序集合,集合中的元素没有先后顺序但都唯一,有点类似于 Java 中的 HashSet 。

1.应用场景

需要存放的数据不能重复的场景

  • 举例:网站 UV 统计(数据量巨大的场景还是 HyperLogLog更适合一些)、文章点赞、动态点赞等场景。
  • 相关命令:SCARD(获取集合数量) 。

需要获取多个数据源交集、并集和差集的场景

  • 举例:共同好友(交集)、共同粉丝(交集)、共同关注(交集)、好友推荐(差集)、音乐推荐(差集)、订阅号推荐(差集+交集) 等场景。
  • 相关命令:SINTER(交集)、SINTERSTORE (交集)、SUNION (并集)、SUNIONSTORE(并集)、SDIFF(差集)、SDIFFSTORE (差集)。

需要随机获取数据源中的元素的场景

  • 举例:抽奖系统、随机点名等场景。
  • 相关命令:SPOP(随机获取集合中的元素并移除,适合不允许重复中奖的场景)、SRANDMEMBER(随机获取集合中的元素,适合允许重复中奖的场景)。
2.内部实现

Set 类型的底层数据结构是由哈希表或整数集合实现的:

5.zset 有序集合

1.应用场景

需要随机获取数据源中的元素根据某个权重进行排序的场景

  • 举例:各种排行榜比如直播间送礼物的排行榜、朋友圈的微信步数排行榜、王者荣耀中的段位排行榜、话题热度排行榜等等。
  • 相关命令:ZRANGE (从小到大排序)、 ZREVRANGE (从大到小排序)、ZREVRANK (指定元素排名)。

2.内部实现

Zset 类型的底层数据结构是由压缩列表或跳表实现的: 

跳表是怎么实现的?

链表在查找元素的时候,因为需要逐一查找,所以查询效率非常低,时间复杂度是O(N),于是就出现了跳表。跳表是在链表基础上改进过来的,实现了一种「多层」的有序链表,这样的好处是能快读定位数据。

那跳表长什么样呢?我这里举个例子,下图展示了一个层级为 3 的跳表。

img

图中头节点有 L0~L2 三个头指针,分别指向了不同层级的节点,然后每个层级的节点都通过指针连接起来:

  • L0 层级共有 5 个节点,分别是节点1、2、3、4、5;
  • L1 层级共有 3 个节点,分别是节点 2、3、5;
  • L2 层级只有 1 个节点,也就是节点 3 。

如果我们要在链表中查找节点 4 这个元素,只能从头开始遍历链表,需要查找 4 次,而使用了跳表后,只需要查找 2 次就能定位到节点 4,因为可以在头节点直接从 L2 层级跳到节点 3,然后再往前遍历找到节点 4。

可以看到,这个查找过程就是在多个层级上跳来跳去,最后定位到元素。当数据量很大时,跳表的查找复杂度就是 O(logN)。

那跳表节点是怎么实现多层级的呢?这就需要看「跳表节点」的数据结构了,如下:

typedef struct zskiplistNode {
    //Zset 对象的元素值
    sds ele;
    //元素权重值
    double score;
    //后向指针
    struct zskiplistNode *backward;
  
    //节点的level数组,保存每层上的前向指针和跨度
    struct zskiplistLevel {
        struct zskiplistNode *forward;
        unsigned long span;
    } level[];
} zskiplistNode;

Zset 对象要同时保存「元素」和「元素的权重」,对应到跳表节点结构里就是 sds 类型的 ele 变量和 double 类型的 score 变量。每个跳表节点都有一个后向指针(struct zskiplistNode *backward),指向前一个节点,目的是为了方便从跳表的尾节点开始访问节点,这样倒序查找时很方便。

跳表是一个带有层级关系的链表,而且每一层级可以包含多个节点,每一个节点通过指针连接起来,实现这一特性就是靠跳表节点结构体中的zskiplistLevel 结构体类型的 level 数组

level 数组中的每一个元素代表跳表的一层,也就是由 zskiplistLevel 结构体表示,比如 leve[0] 就表示第一层,leve[1] 就表示第二层。zskiplistLevel 结构体里定义了「指向下一个跳表节点的指针」和「跨度」,跨度时用来记录两个节点之间的距离。

比如,下面这张图,展示了各个节点的跨度。

img

第一眼看到跨度的时候,以为是遍历操作有关,实际上并没有任何关系,遍历操作只需要用前向指针(struct zskiplistNode *forward)就可以完成了。

Redis 跳表在创建节点的时候,随机生成每个节点的层数,并没有严格维持相邻两层的节点数量比例为 2 : 1 的情况。

具体的做法是,跳表在创建节点时候,会生成范围为[0-1]的一个随机数,如果这个随机数小于 0.25(相当于概率 25%),那么层数就增加 1 层,然后继续生成下一个随机数,直到随机数的结果大于 0.25 结束,最终确定该节点的层数

这样的做法,相当于每增加一层的概率不超过 25%,层数越高,概率越低,层高最大限制是 64。

虽然我前面讲解跳表的时候,图中的跳表的「头节点」都是 3 层高,但是其实如果层高最大限制是 64,那么在创建跳表「头节点」的时候,就会直接创建 64 层高的头节点

压缩列表是怎么实现的?

压缩列表是 Redis 为了节约内存而开发的,它是由连续内存块组成的顺序型数据结构,有点类似于数组。

img

压缩列表在表头有三个字段:

  • *zlbytes*,记录整个压缩列表占用对内存字节数;
  • *zltail*,记录压缩列表「尾部」节点距离起始地址由多少字节,也就是列表尾的偏移量;
  • *zllen*,记录压缩列表包含的节点数量;
  • *zlend*,标记压缩列表的结束点,固定值 0xFF(十进制255)。

在压缩列表中,如果我们要查找定位第一个元素和最后一个元素,可以通过表头三个字段(zllen)的长度直接定位,复杂度是 O(1)。而查找其他元素时,就没有这么高效了,只能逐个查找,此时的复杂度就是 O(N) 了,因此压缩列表不适合保存过多的元素

另外,压缩列表节点(entry)的构成如下:

img

压缩列表节点包含三部分内容:

  • prevlen,记录了「前一个节点」的长度,目的是为了实现从后向前遍历;
  • encoding,记录了当前节点实际数据的「类型和长度」,类型主要有两种:字符串和整数。
  • data,记录了当前节点的实际数据,类型和长度都由 encoding 决定;

当我们往压缩列表中插入数据时,压缩列表就会根据数据类型是字符串还是整数,以及数据的大小,会使用不同空间大小的 prevlen 和 encoding 这两个元素里保存的信息,这种根据数据大小和类型进行不同的空间大小分配的设计思想,正是 Redis 为了节省内存而采用的

压缩列表的缺点是会发生连锁更新的问题,因此连锁更新一旦发生,就会导致压缩列表占用的内存空间要多次重新分配,这就会直接影响到压缩列表的访问性能

所以说,虽然压缩列表紧凑型的内存布局能节省内存开销,但是如果保存的元素数量增加了,或是元素变大了,会导致内存重新分配,最糟糕的是会有「连锁更新」的问题

因此,压缩列表只会用于保存的节点数量不多的场景,只要节点数量足够小,即使发生连锁更新,也是能接受的。

虽说如此,Redis 针对压缩列表在设计上的不足,在后来的版本中,新增设计了两种数据结构:quicklist(Redis 3.2 引入) 和 listpack(Redis 5.0 引入)。这两种数据结构的设计目标,就是尽可能地保持压缩列表节省内存的优势,同时解决压缩列表的「连锁更新」的问题。

跳表是怎么设置层高的?

跳表在创建节点时候,会生成范围为[0-1]的一个随机数,如果这个随机数小于 0.25(相当于概率 25%),那么层数就增加 1 层,然后继续生成下一个随机数,直到随机数的结果大于 0.25 结束,最终确定该节点的层数。

4.除了 Redis,你还知道其他分布式缓存方案吗?

分布式缓存的话,比较老牌同时也是使用的比较多的还是 Memcached 和 Redis

 说一下 Redis 和 Memcached 的区别和共同点

共同点

  1. 都是基于内存的数据库,一般都用来当做缓存使用。
  2. 都有过期策略。
  3. 两者的性能都非常高。

区别:累就极限兴国

  1. 数据类型:Redis 支持更丰富的数据类型(支持更复杂的应用场景)。Redis 不仅仅支持简单的 k/v 类型的数据,同时还提供 list,set,zset,hash 等数据结构的存储。Memcached 只支持最简单的 k/v 数据类型。
  2. 数据持久化:Redis 支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而 Memcached 把数据全部存在内存之中。也就是说,Redis 有灾难恢复机制而 Memcached 没有。
  3. 集群模式支持:Memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 Redis 自 3.0 版本起是原生支持集群模式的。
  4. 线程模型:Memcached 是多线程,非阻塞 IO 复用的网络模型;Redis 使用单线程的多路 IO 复用模型。 (Redis 6.0 针对网络数据的读写引入了多线程)
  5. 特性支持:Redis 支持发布订阅模型、Lua 脚本、事务等功能,而 Memcached 不支持。并且,Redis 支持更多的编程语言。
  6. 过期数据删除:Memcached 过期数据的删除策略只用了惰性删除,而 Redis 同时使用了惰性删除与定期删除。

5.常见的缓存读写策略

1.旁路缓存模式

Cache Aside Pattern 是我们平时使用比较多的一个缓存读写模式,比较适合读请求比较多的场景。

Cache Aside Pattern 中服务端需要同时维系 db 和 cache,并且是以 db 的结果为准。

下面我们来看一下这个策略模式下的缓存读写步骤。

  • 先更新 db
  • 然后直接删除 cache 。

简单画了一张图帮助大家理解写的步骤。

:

  • 从 cache 中读取数据,读取到就直接返回
  • cache 中读取不到的话,就从 db 中读取数据返回
  • 再把数据放到 cache 中。

简单画了一张图帮助大家理解读的步骤。

你仅仅了解了上面这些内容的话是远远不够的,我们还要搞懂其中的原理。

比如说面试官很可能会追问:“在写数据的过程中,可以先删除 cache ,后更新 db 么?

答案: 那肯定是不行的!因为这样可能会造成 数据库(db)和缓存(Cache)数据不一致的问题。

举例:请求 1 先写数据 A,请求 2 随后读数据 A 的话,就很有可能产生数据不一致性的问题。

这个过程可以简单描述为:

请求 1 先把 cache 中的 A 数据删除 -> 请求 2 从 db 中读取数据->请求 1 再把 db 中的 A 数据更新

当你这样回答之后,面试官可能会紧接着就追问:“在写数据的过程中,先更新 db,后删除 cache 就没有问题了么?

答案: 理论上来说还是可能会出现数据不一致性的问题,不过概率非常小,因为缓存的写入速度是比数据库的写入速度快很多。

举例:请求 1 先读数据 A,请求 2 随后写数据 A,并且数据 A 在请求 1 请求之前不在缓存中的话,也有可能产生数据不一致性的问题。

这个过程可以简单描述为:

请求 1 从 db 读数据 A-> 请求 2 更新 db 中的数据 A(此时缓存中无数据 A ,故不用执行删除缓存操作 ) -> 请求 1 将数据 A 写入 cache

/*2.读写穿透

这种缓存读写策略小伙伴们应该也发现了在平时在开发过程中非常少见。抛去性能方面的影响,大概率是因为我们经常使用的分布式缓存 Redis 并没有提供 cache 将数据写入 db 的功能。

写(Write Through):

  • 先查 cache,cache 中不存在,直接更新 db。
  • cache 中存在,则先更新 cache,然后 cache 服务自己更新 db(同步更新 cache 和 db)。

简单画了一张图帮助大家理解写的步骤。

读(Read Through):

  • 从 cache 中读取数据,读取到就直接返回 。
  • 读取不到的话,先从 db 加载,写入到 cache 后返回响应。

简单画了一张图帮助大家理解读的步骤。

3.异步缓存读写

Write Behind Pattern 和 Read/Write Through Pattern 很相似,两者都是由 cache 服务来负责 cache 和 db 的读写。

但是,两个又有很大的不同:Read/Write Through 是同步更新 cache 和 db,而 Write Behind 则是只更新缓存,不直接更新 db,而是改为异步批量的方式来更新 db

 6.Redis 除了做缓存,还能做什么?

  • 分布式锁:通过 Redis 来做分布式锁是一种比较常见的方式。通常情况下,我们都是基于 Redisson 来实现分布式锁。关于 Redis 实现分布式锁的详细介绍,可以看我写的这篇文章:分布式锁详解
  • 限流:一般是通过 Redis + Lua 脚本的方式来实现限流。如果不想自己写 Lua 脚本的话,也可以直接利用 Redisson 中的 RRateLimiter 来实现分布式限流,其底层实现就是基于 Lua 代码+令牌桶算法。
  • 消息队列:Redis 自带的 List 数据结构可以作为一个简单的队列使用。Redis 5.0 中增加的 Stream 类型的数据结构更加适合用来做消息队列。它比较类似于 Kafka,有主题和消费组的概念,支持消息持久化以及 ACK 机制。
  • 延时队列:Redisson 内置了延时队列(基于 Sorted Set 实现的)。
  • 分布式 Session :利用 String 或者 Hash 数据类型保存 Session 数据,所有的服务器都可以访问。
  • 复杂业务场景:通过 Redis 以及 Redis 扩展(比如 Redisson)提供的数据结构,我们可以很方便地完成很多复杂的业务场景比如通过 Bitmap 统计活跃用户、通过 Sorted Set 维护排行榜。*/

7.Redis做分布式锁

什么是分布式锁

在多线程环境中,如果多个线程同时访问共享资源(例如商品库存、外卖订单),会发生数据竞争,可能会导致出现脏数据或者系统问题,威胁到程序的正常运行。

举个例子,假设现在有 100 个用户参与某个限时秒杀活动,每位用户限购 1 件商品,且商品的数量只有 3 个。如果不对共享资源进行互斥访问,就可能出现以下情况:

  • 线程 1、2、3 等多个线程同时进入抢购方法,每一个线程对应一个用户。
  • 线程 1 查询用户已经抢购的数量,发现当前用户尚未抢购且商品库存还有 1 个,因此认为可以继续执行抢购流程。
  • 线程 2 也执行查询用户已经抢购的数量,发现当前用户尚未抢购且商品库存还有 1 个,因此认为可以继续执行抢购流程。
  • 线程 1 继续执行,将库存数量减少 1 个,然后返回成功。
  • 线程 2 继续执行,将库存数量减少 1 个,然后返回成功。
  • 此时就发生了超卖问题,导致商品被多卖了一份。

共享资源未互斥访问导致出现问题

共享资源未互斥访问导致出现问题

为了保证共享资源被安全地访问,我们需要使用互斥操作对共享资源进行保护,即同一时刻只允许一个线程访问共享资源,其他线程需要等待当前线程释放后才能访问。这样可以避免数据竞争和脏数据问题,保证程序的正确性和稳定性。

如何才能实现共享资源的互斥访问呢? 锁是一个比较通用的解决方案,更准确点来说是悲观锁。

悲观锁总是假设最坏的情况,认为共享资源每次被访问的时候就会出现问题(比如共享数据被修改),所以每次在获取资源操作的时候都会上锁,这样其他线程想拿到这个资源就会阻塞直到锁被上一个持有者释放。也就是说,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程

对于单机多线程来说,在 Java 中,我们通常使用 ReentrantLock 类、synchronized 关键字这类 JDK 自带的 本地锁 来控制一个 JVM 进程内的多个线程对本地共享资源的访问。

下面是我对本地锁画的一张示意图。

本地锁

本地锁

从图中可以看出,这些线程访问共享资源是互斥的,同一时刻只有一个线程可以获取到本地锁访问共享资源。

分布式系统下,不同的服务/客户端通常运行在独立的 JVM 进程上。如果多个 JVM 进程共享同一份资源的话,使用本地锁就没办法实现资源的互斥访问了。于是,分布式锁 就诞生了。

举个例子:系统的订单服务一共部署了 3 份,都对外提供服务。用户下订单之前需要检查库存,为了防止超卖,这里需要加锁以实现对检查库存操作的同步访问。由于订单服务位于不同的 JVM 进程中,本地锁在这种情况下就没办法正常工作了。我们需要用到分布式锁,这样的话,即使多个线程不在同一个 JVM 进程中也能获取到同一把锁,进而实现共享资源的互斥访问。

下面是我对分布式锁画的一张示意图。

分布式锁

分布式锁

从图中可以看出,这些独立的进程中的线程访问共享资源是互斥的,同一时刻只有一个线程可以获取到分布式锁访问共享资源。

redis实现分布式锁:(重要帮助理解)

Redis 中的分布式锁通过在 Redis 数据库中存储一个特定的键(key)来实现。这个键代表锁的标识,键的值(value)通常是一个唯一的标识符(如 UUID),以表明哪个客户端持有该锁。这个键通常还会附带一个过期时间,以防止因为某种原因(如客户端崩溃)导致锁永远无法释放的情况。

### 锁的存储位置

**具体位置**:实际上,这个锁是存储在Redis的内存中的某个键空间中。Redis 是一个内存数据库,其所有数据默认存储在内存中。

### 锁的获取与释放过程

在获取锁时,客户端会在Redis中设置一个键(比如`myLock`),如果该键不存在,则表示获取锁成功,并设置相应的值和过期时间。如果该键已经存在,则表示锁已被其他客户端持有,无法获取锁。

### 举例说明

假设有两个客户端A和B,尝试获取一个名为`myLock`的锁。具体步骤如下:

1. **客户端 A 获取锁**:
    客户端 A 发送命令:

    ```plaintext
    SET myLock "A-UUID" NX PX 30000
    ```

    解释:
    - `myLock` 是锁的键。
    - `"A-UUID"` 是唯一标识符。
    - `NX` 表示仅在键 `myLock` 不存在时才设置。
    - `PX` 表示键的过期时间,单位是毫秒,这里设置为30秒。

    如果 `myLock` 之前不存在,命令成功执行,客户端 A 获得锁,Redis 中现在存储了以下数据:

    ```
    Key: myLock
    Value: "A-UUID"
    Expiry: 30 seconds
    ```

2. **客户端 B 获取锁失败**:
    当客户端 B 发送相同命令试图获取锁时:

    ```plaintext
    SET myLock "B-UUID" NX PX 30000
    ```

    CLI 响应指示命令执行失败,因为键 `myLock` 已经存在。客户端 B 无法获取锁。

3. **客户端 A 释放锁**:
    当客户端 A 完成了它的工作并准备释放锁时,它会执行 Lua 脚本来确保安全释放:

    ```plaintext
    if redis.call('get', KEYS[1]) == ARGV[1] then
        return redis.call('del', KEYS[1])
    else
        return 0
    end
    ```

    执行参数:
    - `KEYS[1]` 是锁的键 `myLock`。
    - `ARGV[1]` 是客户端 A 的 UUID `"A-UUID"`。

    如果键 `myLock` 的值等于 `"A-UUID"`,则删除该键(释放锁);否则不进行任何操作。

### 源代码部分回顾

```java
// 获取锁
public boolean acquireLock(Jedis jedis, String lockKey, String value, int expireTime) {
    SetParams params = new SetParams().nx().px(expireTime);
    String result = jedis.set(lockKey, value, params);
    return "OK".equals(result);
}

// 释放锁
public void releaseLock(Jedis jedis, String lockKey, String value) {
    String script = "if redis.call('get', KEYS[1]) == ARGV[1] then " +
                    "return redis.call('del', KEYS[1]) " +
                    "else " +
                    "return 0 " +
                    "end";
    jedis.eval(script, 1, lockKey, value);
}
```

### 结论

- **锁的位置**:锁存储在Redis内存中,它是通过存储一个带有唯一值的键实现的。
- **锁的获取**:通过 `SET NX PX` 命令,确保原子性。
- **锁的释放**:通过Lua脚本,确保只有持有锁的客户端可以成功释放锁。

这样可以通过Redis高效地实现分布式锁,并且利用Redis的内存存储特性,保证锁操作的高性能。

常见分布式锁实现方案如下:

  • 基于分布式协调服务 ZooKeeper 实现分布式锁。
  • 基于分布式键值存储系统比如 Redis 实现分布式锁。

1.如何基于 Redis 实现一个最简易的分布式锁?

就是用特殊的set命令帮忙实现

不论是本地锁还是分布式锁,核心都在于“互斥”。

在 Redis 中, SETNX 命令是可以帮助我们实现互斥。SETNXSET if Not eXists (对应 Java 中的 setIfAbsent 方法),如果 key 不存在的话,才会设置 key 的值。如果 key 已经存在, SETNX 啥也不做。

> SETNX lockKey uniqueValue
(integer) 1
> SETNX lockKey uniqueValue
(integer) 0

释放锁的话,直接通过 DEL 命令删除对应的 key 即可。

> DEL lockKey
(integer) 1

为了防止误删到其他的锁,这里我们建议使用 Lua 脚本通过 key 对应的 value(唯一值)来判断。

选用 Lua 脚本是为了保证解锁操作的原子性。因为 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,从而保证了锁释放操作的原子性。

// 释放锁时,先比较锁对应的 value 值是否相等,避免锁的误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

Redis 实现简易分布式锁

Redis 实现简易分布式锁

这是一种最简易的 Redis 分布式锁实现,实现方式比较简单,性能也很高效。不过,这种方式实现分布式锁存在一些问题。就比如应用程序遇到一些问题比如释放锁的逻辑突然挂掉,可能会导致锁无法被释放,进而造成共享资源无法再被其他线程/进程访问

补充:锁与锁之间作用范围不一样,实现原理也不一样:

  • synchronized 适用于单个JVM内的多线程同步,确保同一时间只有一个线程访问被同步的代码块或方法。
  • 分布式锁适用于分布式系统中,保证多个不同节点或实例之间的资源访问同步。

基于 Redis 节点实现分布式锁时,对于加锁操作,我们需要满足三个条件。

  • 加锁包括了读取锁变量、检查锁变量值和设置锁变量值三个操作,但需要以原子操作的方式完成,所以,我们使用 SET 命令带上 NX 选项来实现加锁;
  • 锁变量需要设置过期时间,以免客户端拿到锁后发生异常,导致锁一直无法释放,所以,我们在 SET 命令执行时加上 EX/PX 选项,设置其过期时间;
  • 锁变量的值需要能区分来自不同客户端的加锁操作,以免在释放锁时,出现误释放操作,所以,我们使用 SET 命令设置锁变量值时,每个客户端设置的值是一个唯一值,用于标识客户端;

满足这三个条件的分布式命令如下:

SET lock_key unique_value NX PX 10000 
  • lock_key 就是 key 键;
  • unique_value 是客户端生成的唯一的标识,区分来自不同客户端的锁操作;
  • NX 代表只在 lock_key 不存在时,才对 lock_key 进行设置操作;
  • PX 10000 表示设置 lock_key 的过期时间为 10s,这是为了避免客户端发生异常而无法释放锁。

而解锁的过程就是将 lock_key 键删除(del lock_key),但不能乱删,要保证执行操作的客户端就是加锁的客户端。所以,解锁的时候,我们要先判断锁的 unique_value 是否为加锁客户端,是的话,才将 lock_key 键删除。

可以看到,解锁是有两个操作,这时就需要 Lua 脚本来保证解锁的原子性,因为 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,保证了锁释放操作的原子性。

// 释放锁时,先比较 unique_value 是否相等,避免锁的误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

这样一来,就通过使用 SET 命令和 Lua 脚本在 Redis 单节点上完成了分布式锁的加锁和解锁。

 2.为什么要给锁设置一个过期时间

为了避免锁无法被释放,我们可以想到的一个解决办法就是:给这个 key(也就是锁) 设置一个过期时间

127.0.0.1:6379> SET lockKey uniqueValue EX 3 NX
OK
  • lockKey:加锁的锁名;
  • uniqueValue:能够唯一标识锁的随机字符串;
  • NX:只有当 lockKey 对应的 key 值不存在的时候才能 SET 成功;
  • EX:过期时间设置(秒为单位)EX 3 标示这个锁有一个 3 秒的自动过期时间。与 EX 对应的是 PX(毫秒为单位),这两个都是过期时间设置。

一定要保证设置指定 key 的值和过期时间是一个原子操作!!! 不然的话,依然可能会出现锁无法被释放的问题。

这样确实可以解决问题,不过,这种解决办法同样存在漏洞:如果操作共享资源的时间大于过期时间,就会出现锁提前过期的问题,进而导致分布式锁直接失效。如果锁的超时时间设置过长,又会影响到性能。

你或许在想:如果操作共享资源的操作还未完成,锁过期时间能够自己续期就好了!

3.如何优雅的进行锁的续期

Redisson 是一个开源的 Java 语言 Redis 客户端,提供了很多开箱即用的功能,不仅仅包括多种分布式锁的实现。并且,Redisson 还支持 Redis 单机、Redis Sentinel、Redis Cluster 等多种部署架构。

Redisson 中的分布式锁自带自动续期机制,使用起来非常简单,原理也比较简单,其提供了一个专门用来监控和续期锁的 Watch Dog( 看门狗),如果操作共享资源的线程还未执行完成的话,Watch Dog 会不断地延长锁的过期时间,进而保证锁不会因为超时而被释放。

4.如何实现可重入锁

所谓可重入锁指的是在一个线程中可以多次获取同一把锁,比如一个线程在执行一个带锁的方法,该方法中又调用了另一个需要相同锁的方法,则该线程可以直接执行调用的方法即可重入 ,而无需重新获得锁。像 Java 中的 synchronizedReentrantLock 都属于可重入锁。

不可重入的分布式锁基本可以满足绝大部分业务场景了,一些特殊的场景可能会需要使用可重入的分布式锁。

可重入分布式锁的实现核心思路是线程在获取锁的时候判断是否为自己的锁,如果是的话,就不用再重新获取了。为此,我们可以为每个锁关联一个可重入计数器和一个占有它的线程。当可重入计数器大于 0 时,则锁被占有,需要判断占有该锁的线程和请求获取锁的线程是否为同一个。

实际项目中,我们不需要自己手动实现,推荐使用我们上面提到的 Redisson ,其内置了多种类型的锁比如可重入锁(Reentrant Lock)、自旋锁(Spin Lock)、公平锁(Fair Lock)、多重锁(MultiLock)、 红锁(RedLock)、 读写锁(ReadWriteLock)。

5.Redis 如何解决集群情况下分布式锁的可靠性? 

Redis 集群下,上面介绍到的分布式锁的实现会存在一些问题。由于 Redis 集群数据同步到各个节点时是异步的,如果在 Redis 主节点获取到锁后,在没有同步到其他节点时,Redis 主节点宕机了,此时新的 Redis 主节点依然可以获取锁,所以多个应用服务就可以同时获取到锁。

如果只有一个节点知道锁的状态,那个节点就会成为单点故障。一旦这个节点不可用,整个系统将无法正常工作,导致分布式锁无法获取或者释放。而让每个节点都知道锁的情况,可避免单点故障,提高系统的容错性和可用性。

针对这个问题,Redis 之父 antirez 设计了 Redlock 算法 来解决。

Redlock 算法的基本思路,是让客户端和多个独立的 Redis 节点依次请求申请加锁,如果客户端能够和半数以上的节点成功地完成加锁操作,那么我们就认为,客户端成功地获得分布式锁,否则加锁失败

这样一来,即使有某个 Redis 节点发生故障,因为锁的数据在其他节点上也有保存,所以客户端仍然可以正常地进行锁操作,锁的数据也不会丢失。

Redlock 算法加锁三个过程:

  • 第一步是,客户端获取当前时间(t1)。
  • 第二步是,客户端按顺序依次向 N 个 Redis 节点执行加锁操作:
    • 加锁操作使用 SET 命令,带上 NX,EX/PX 选项,以及带上客户端的唯一标识。
    • 如果某个 Redis 节点发生故障了,为了保证在这种情况下,Redlock 算法能够继续运行,我们需要给「加锁操作」设置一个超时时间(不是对「锁」设置超时时间,而是对「加锁操作」设置超时时间),加锁操作的超时时间需要远远地小于锁的过期时间,一般也就是设置为几十毫秒。
  • 第三步是,一旦客户端从超过半数(大于等于 N/2+1)的 Redis 节点上成功获取到了锁,就再次获取当前时间(t2),然后计算计算整个加锁过程的总耗时(t2-t1)。如果 t2-t1 < 锁的过期时间,此时,认为客户端加锁成功,否则认为加锁失败。

可以看到,加锁成功要同时满足两个条件(简述:如果有超过半数的 Redis 节点成功的获取到了锁,并且总耗时没有超过锁的有效时间,那么就是加锁成功):

  • 条件一:客户端从超过半数(大于等于 N/2+1)的 Redis 节点上成功获取到了锁;
  • 条件二:客户端从大多数节点获取锁的总耗时(t2-t1)小于锁设置的过期时间。

加锁成功后,客户端需要重新计算这把锁的有效时间,计算的结果是「锁最初设置的过期时间」减去「客户端从大多数节点获取锁的总耗时(t2-t1)」。如果计算的结果已经来不及完成共享数据的操作了,我们可以释放锁,以免出现还没完成数据操作,锁就过期了的情况。

加锁失败后,客户端向所有 Redis 节点发起释放锁的操作,释放锁的操作

6.redis用过哪些指令 做分布式锁有什么缺点

命令作用
SET key value设置键值
GET key获取键值
DEL key删除键
EXPIRE key seconds设置过期时间

做分布式锁有什么缺点

(1)锁误删

 

if (redis.get("lock:order").equals("Harris")) { // 获取锁的线程判断锁是否属于自己
    redis.del("lock:order"); // 误删其他线程加的锁
}

问题
  • 多个线程并发执行,可能 A 线程释放了 B 线程的锁,导致并发安全问题。
解决方案
  • 使用 Lua 脚本,确保获取锁 & 释放锁是原子操作
 

if redis.call("get", KEYS[1]) == ARGV[1] then
    return redis.call("del", KEYS[1])
else
    return 0
end

锁误删(删除了其他线程的锁)的主要原因是 Redis 的锁是基于键值对存储的,没有严格绑定线程。在高并发环境下,某个线程可能误删其他线程创建的锁,导致并发安全问题。


1. 锁误删的发生过程

假设有 两个线程 A 和 B,它们都想加锁 lock:order

🚨 场景:加锁 → 任务执行 → 误删

  1. 线程 A 获取锁:
    SET lock:order "A" NX EX 10  # A 线程持有锁,10 秒后自动释放
    
  2. A 线程业务执行较慢,时间超过了 10 秒,锁已自动过期
  3. 线程 B 获取同一个锁:
    SET lock:order "B" NX EX 10  # B 线程持有新锁
    
  4. A 线程完成任务,尝试释放锁
    if (redis.get("lock:order").equals("A")) { // A 线程检查锁
        redis.del("lock:order");  // A 线程释放锁
    }
    
    • 问题:A 线程没有意识到锁已经被 B 线程重新获取,它删除了 B 线程的锁

2. 为什么会发生?

🔴 根本原因:Redis SET NX 仅保证 互斥性,但无法保证 锁归属

  • Redis 不会自动关联锁和线程,只知道 某个值存在,不知道谁持有锁
  • DEL lock:order 直接删除了 key,不会检查是谁加的锁


(2)锁过期问题

如果持有锁的线程因 GC 停顿或机器宕机,锁可能 未完成任务就被释放,导致并发问题。

解决方案
  • Watchdog 机制(如 Redisson 实现):
    • 线程持有锁时,定期续期,避免锁过早释放。

(3)Redis 主从复制延迟

  • 如果 Redis 采用 主从架构(Master-Slave),可能导致 锁丢失
    • A 线程在 主节点加锁
    • Redis 发生主从切换
    • B 线程在新主节点再次加锁
    • 两个线程同时执行,导致数据不一致
解决方案
  • 使用 Redis 集群 + RedLock 算法(多个 Redis 实例投票决定锁归属)

8.redis线程模型

1.redis是单线程吗

Redis 是单线程模型。Redis在I0操作上只是用单个线程处理客户端请求。尽管Redis是单线程,但
是它通过非阻塞 I/0 和异步操作来实现高性能和高并发。Redis 单线程会不断地处理多个客户端的
请求。此外由于redis是单线程模型,避免了多线程之间的锁竞争以及上下文切换的开销,提高
性能。

2.Redis哪些地方使用了多线程?

Redis 单线程指的是「接收客户端请求->解析请求 ->进行数据读写等操作->发送数据给客户端」这个过程是由一个线程(主线程)来完成的,这也是我们常说 Redis 是单线程的原因。

但是,Redis 程序并不是单线程的,Redis 在启动的时候,是会启动后台线程(BIO)的:

  • Redis 在 2.6 版本,会启动 2 个后台线程,分别处理关闭文件、AOF 刷盘这两个任务;
  • Redis 在 4.0 版本之后,新增了一个新的后台线程,用来异步释放 Redis 内存,也就是 lazyfree 线程。例如执行 unlink key / flushdb async / flushall async 等命令,会把这些删除操作交给后台线程来执行,好处是不会导致 Redis 主线程卡顿。因此,当我们要删除一个大 key 的时候,不要使用 del 命令删除,因为 del 是在主线程处理的,这样会导致 Redis 主线程卡顿,因此我们应该使用 unlink 命令来异步删除大key。

之所以 Redis 为「关闭文件、AOF 刷盘、释放内存」这些任务创建单独的线程来处理,是因为这些任务的操作都是很耗时的,如果把这些任务都放在主线程来处理,那么 Redis 主线程就很容易发生阻塞,这样就无法处理后续的请求了。

后台线程相当于一个消费者,生产者把耗时任务丢到任务队列中,消费者(BIO)不停轮询这个队列,拿出任务就去执行对应的方法即可。

img

虽然 Redis 的主要工作(网络 I/O 和执行命令)一直是单线程模型,但是在 Redis 6.0 版本之后,也采用了多个 I/O 线程来处理网络请求这是因为随着网络硬件的性能提升,Redis 的性能瓶颈有时会出现在网络 I/O 的处理上

所以为了提高网络 I/O 的并行度,Redis 6.0 对于网络 I/O 采用多线程来处理。但是对于命令的执行,Redis 仍然使用单线程来处理,所以大家不要误解Redis 有多线程同时执行命令

Redis 官方表示,Redis 6.0 版本引入的多线程 I/O 特性对性能提升至少是一倍以上

2.讲一下redis的网络模型

Redis基于Reactor模式开发了网络事件处理器,这个处理器被称为文件事件处理器。它的组成结构为4部分:多个套接字、10多路复用程序、文件事件分派器、事件处理器。因为文件事件分派器队列的消费是单线程的,所以Redis才叫单线程模型。

  • 文件事件处理器使用I/0多路复用(multiplexing)程序来同时监听多个套接字,并根据套接字目前执行的任务来为套接字关联不同的事件处理器,
  • 当被监听的套接字准备好执行连接accept、read、write、close等操作时,与操作相对应的文件事件就会产生,这时文件事件处理器就会调用套接字之前关联好的事件处理器来处理这些事件。

虽然文件事件处理器以单线程方式运行, 但通过使用 !/0 多路复用程序来监听多个套接字, 文件事件处理器既实现了高性能的网络通信模型,又可以很好地与redis 服务器中其他同样以单线程方式运行的模块进行对接, 这保持了 Redis 内部单线程设计的简单性。

3.Redis怎么实现的io多路复用?

就是让一个线程可以同时处理多个请求

为什么 Redis 中要使用 I/O 多路复用这种技术呢?

因为 Redis 是跑在「单线程」中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入 或 输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导,致整个进程无法对其它客户提供服务。而 I/O 多路复用就是为了解决这个问题而出现的。为了让单线程(进程)的服务端应用同时处理多个客户端的事件,Redis 采用了 IO 多路复用机制。

这里“多路”指的是多个网络连接客户端,“复用”指的是复用同一个线程(单进程)。I/O 多路复用其实是使用一个线程来检查多个 Socket 的就绪状态,在单个线程中通过记录跟踪每一个 socket(I/O流)的状态来管理处理多个 I/O 流。如下图是 Redis 的 I/O 多路复用模型:

如上图对 Redis 的 I/O 多路复用模型进行一下描述说明:

  • 一个 socket 客户端与服务端连接时,会生成对应一个套接字描述符(套接字描述符是文件描述符的一种),每一个 socket 网络连接其实都对应一个文件描述符。
  • 多个客户端与服务端连接时,Redis 使用 I/O 多路复用程序 将客户端 socket 对应的 FD 注册到监听列表(一个队列)中。当客服端执行 read、write 等操作命令时,I/O 多路复用程序会将命令封装成一个事件,并绑定到对应的 FD 上。
  • 文件事件处理器使用 I/O 多路复用模块同时监控多个文件描述符(fd)的读写情况,当 accept、read、write 和 close 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器进行处理相关命令操作。

例如:以 Redis 的 I/O 多路复用程序 epoll 函数为例。多个客户端连接服务端时,Redis 会将客户端 socket 对应的 fd 注册进 epoll,然后 epoll 同时监听多个文件描述符(FD)是否有数据到来,如果有数据来了就通知事件处理器赶紧处理,这样就不会存在服务端一直等待某个客户端给数据的情形。

整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,当其中一个 client 端达到写或读的状态,文件事件处理器就马上执行,从而就不会出现 I/O 堵塞的问题,提高了网络通信的性能。

Redis 的 I/O 多路复用模式使用的是 Reactor 设置模式的方式来实现。

3.redis为什么是单线程还这么快

  • Redis 的大部分操作都在内存中完成,并且采用了高效的数据结构,因此 Redis 瓶颈可能是机器的内存或者网络带宽,而并非 CPU,既然 CPU 不是瓶颈,那么自然就采用单线程的解决方案了;
  • Redis 采用单线程模型可以避免了多线程之间的竞争,省去了多线程切换带来的时间和性能上的开销,而且也不会导致死锁问题。
  • Redis 采用了 I/O 多路复用机制处理大量的客户端 Socket 请求,IO 多路复用机制是指一个线程处理多个 IO 流,就是我们经常听到的 select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听 Socket 和已连接 Socket。内核会一直监听这些 Socket 上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。

补充:再讲解一下io多路复用

i/0多路复用**允许单线程同时监听多个Socket,当某个Socket有数据可读或可写时,线程能迅速获知并行动,有效避免空等最大化利用CPU资源。

4.Redis6.0 之前为什么不使用多线程?

  • 单线程编程容易并且更容易维护;
  • Redis 的性能瓶颈不在 CPU ,主要在内存和网络;
  • 多线程就会存在死锁、线程上下文切换等问题,甚至会影响性能。

5.Redis6.0 之后为什么使用多线程?

Redis6.0 引入多线程主要是为了提高网络 IO 读写性能,因为这个算是 Redis 中的一个性能瓶颈(Redis 的瓶颈主要受限于内存和网络)。

虽然,Redis6.0 引入了多线程,但是 Redis 的多线程只是在网络数据的读写这类耗时操作上使用了,执行命令仍然是单线程顺序执行。因此,你也不需要担心线程安全问题。

9.redis持久化

使用缓存的时候,我们经常需要对内存中的数据进行持久化也就是将内存中的数据写入到硬盘中。大部分原因是为了之后重用数据(比如重启机器、机器故障之后恢复数据),或者是为了做数据同步(比如 Redis 集群的主从节点通过 RDB 文件同步数据)。

Redis 不同于 Memcached 的很重要一点就是,Redis 支持持久化,而且支持 3 种持久化方式:

  • AOF 日志:每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里;
  • RDB 快照:将某一时刻的内存数据,以二进制的方式写入磁盘;
  • 混合持久化方式:Redis 4.0 新增的方式,集成了 AOF 和 RBD 的优点;

1.redis的持久化机制是什么

2.AOF的工作流程

  • 命令追加(append):所有的写命令会追加到 AOF 缓冲区中。
  • 文件写入(write):将 AOF 缓冲区的数据写入到 AOF 文件中。这一步需要调用write函数(系统调用),write将数据写入到了系统内核缓冲区之后直接返回了(延迟写)。注意!!!此时并没有同步到磁盘。
  • 文件同步(fsync):AOF 缓冲区根据对应的持久化方式( fsync 策略)向硬盘做同步操作。这一步需要调用 fsync 函数(系统调用), fsync 针对单个文件操作,对其进行强制硬盘同步,fsync 将阻塞直到写入磁盘完成后返回,保证了数据持久化。
  • 文件重写(rewrite):随着 AOF 文件越来越大,需要定期对 AOF 文件进行重写,达到压缩的目的。
  • 重启加载(load):当 Redis 重启时,可以加载 AOF 文件进行数据恢复。

3.AOF 持久化方式有哪些?

在 Redis 的配置文件中存在三种不同的 AOF 持久化方式( fsync策略),它们分别是:

  1. appendfsync always:主线程调用 write 执行写操作后,后台线程( aof_fsync 线程)立即会调用 fsync 函数同步 AOF 文件(刷盘),fsync 完成后线程返回,这样会严重降低 Redis 的性能(write + fsync)。
  2. appendfsync everysec:主线程调用 write 执行写操作后立即返回,由后台线程( aof_fsync 线程)每秒钟调用 fsync 函数(系统调用)同步一次 AOF 文件(write+fsyncfsync间隔为 1 秒)
  3. appendfsync no:主线程调用 write 执行写操作后立即返回,让操作系统决定何时进行同步,Linux 下一般为 30 秒一次(write但不fsyncfsync 的时机由操作系统决定)。

可以看出:这 3 种持久化方式的主要区别在于 fsync 同步 AOF 文件的时机(刷盘)

为了兼顾数据和写入性能,可以考虑 appendfsync everysec 选项 ,让 Redis 每秒同步一次 AOF 文件,Redis 性能受到的影响较小。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis 还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。

4.AOF 为什么是在执行完命令之后记录日志?

关系型数据库(如 MySQL)通常都是执行命令之前记录日志(方便故障恢复),而 Redis AOF 持久化机制是在执行完命令之后再记录日志。

AOF 记录日志过程

AOF 记录日志过程

为什么是在执行完命令之后记录日志呢?

  • 避免额外的检查开销,AOF 记录日志不会对命令进行语法检查;
  • 在命令执行完之后再记录,不会阻塞当前的命令执行。

这样也带来了风险(我在前面介绍 AOF 持久化的时候也提到过):

  • 如果刚执行完命令 Redis 就宕机会导致对应的修改丢失;
  • 可能会阻塞后续其他命令的执行(AOF 记录日志是在 Redis 主线程中进行的)。

5.AOF重写了解吗

当 AOF 变得太大时,Redis 能够在后台自动重写 AOF 产生一个新的 AOF 文件,这个新的 AOF 文件和原有的 AOF 文件所保存的数据库状态一样,但体积更小。

AOF 重写

AOF 重写

AOF 重写(rewrite) 是一个有歧义的名字,该功能是通过读取数据库中的键值对来实现的,程序无须对现有 AOF 文件进行任何读入、分析或者写入操作。

由于 AOF 重写会进行大量的写入操作,为了避免对 Redis 正常处理命令请求造成影响,Redis 将 AOF 重写程序放到子进程里执行。

AOF 文件重写期间,Redis 还会维护一个 AOF 重写缓冲区,该缓冲区会在子进程创建新 AOF 文件期间,记录服务器执行的所有写命令。当子进程完成创建新 AOF 文件的工作之后,服务器会将重写缓冲区中的所有内容追加到新 AOF 文件的末尾,使得新的 AOF 文件保存的数据库状态与现有的数据库状态一致。最后,服务器用新的 AOF 文件替换旧的 AOF 文件,以此来完成 AOF 文件重写操作。

6.AOF校验机制了解吗

AOF 校验机制是 Redis 在启动时对 AOF 文件进行检查,以判断文件是否完整,是否有损坏或者丢失的数据。这个机制的原理其实非常简单,就是通过使用一种叫做 校验和(checksum) 的数字来验证 AOF 文件。这个校验和是通过对整个 AOF 文件内容进行 CRC64 算法计算得出的数字。如果文件内容发生了变化,那么校验和也会随之改变。因此,Redis 在启动时会比较计算出的校验和与文件末尾保存的校验和(计算的时候会把最后一行保存校验和的内容给忽略点),从而判断 AOF 文件是否完整。

7.如何选择RDB和AOF

关于 RDB 和 AOF 的优缺点,官网上面也给了比较详细的说明Redis persistence,这里结合自己的理解简单总结一下。

RDB 比 AOF 优秀的地方

  • RDB 文件存储的内容是经过压缩的二进制数据, 保存着某个时间点的数据集,文件很小,适合做数据的备份,灾难恢复。AOF 文件存储的是每一次写命令,类似于 MySQL 的 binlog 日志,通常会比 RDB 文件大很多。当 AOF 变得太大时,Redis 能够在后台自动重写 AOF。新的 AOF 文件和原有的 AOF 文件所保存的数据库状态一样,但体积更小。不过, Redis 7.0 版本之前,如果在重写期间有写入命令,AOF 可能会使用大量内存,重写期间到达的所有写入命令都会写入磁盘两次。
  • 使用 RDB 文件恢复数据,直接解析还原数据即可,不需要一条一条地执行命令,速度非常快。而 AOF 则需要依次执行每个写命令,速度非常慢。也就是说,与 AOF 相比,恢复大数据集的时候,RDB 速度更快。

AOF 比 RDB 优秀的地方

  • RDB 的数据安全性不如 AOF,没有办法实时或者秒级持久化数据。生成 RDB 文件的过程是比较繁重的, 虽然 BGSAVE 子进程写入 RDB 文件的工作不会阻塞主线程,但会对机器的 CPU 资源和内存资源产生影响,严重的情况下甚至会直接把 Redis 服务干宕机。AOF 支持秒级数据丢失(取决 fsync 策略,如果是 everysec,最多丢失 1 秒的数据),仅仅是追加命令到 AOF 文件,操作轻量。
  • RDB 文件是以特定的二进制格式保存的,并且在 Redis 版本演进中有多个版本的 RDB,所以存在老版本的 Redis 服务不兼容新版本的 RDB 格式的问题。
  • AOF 以一种易于理解和解析的格式包含所有操作的日志。你可以轻松地导出 AOF 文件进行分析,你也可以直接操作 AOF 文件来解决一些问题。比如,如果执行FLUSHALL命令意外地刷新了所有内容后,只要 AOF 文件没有被重写,删除最新命令并重启即可恢复之前的状态。

综上

  • Redis 保存的数据丢失一些也没什么影响的话,可以选择使用 RDB。
  • 不建议单独使用 AOF,因为时不时地创建一个 RDB 快照可以进行数据库备份、更快的重启以及解决 AOF 引擎错误。
  • 如果保存的数据要求安全性比较高的话,建议同时开启 RDB 和 AOF 持久化或者开启 RDB 和 AOF 混合持久化。

10.redis内存管理

1.Redis 给缓存数据设置过期时间有什么用?

一般情况下,我们设置保存的缓存数据的时候都会设置一个过期时间。为什么呢?

内存是有限且珍贵的,如果不对缓存数据设置过期时间,那内存占用就会一直增长,最终可能会导致 OOM 问题。通过设置合理的过期时间,Redis 会自动删除暂时不需要的数据,为新的缓存数据腾出空间。

Redis 自带了给缓存数据设置过期时间的功能,比如:

127.0.0.1:6379> expire key 60 # 数据在 60s 后过期
(integer) 1
127.0.0.1:6379> setex key 60 value # 数据在 60s 后过期 (setex:[set] + [ex]pire)
OK
127.0.0.1:6379> ttl key # 查看数据还有多久过期
(integer) 56

注意 ⚠️:Redis 中除了字符串类型有自己独有设置过期时间的命令 setex 外,其他方法都需要依靠 expire 命令来设置过期时间 。另外, persist 命令可以移除一个键的过期时间。

过期时间除了有助于缓解内存的消耗,还有什么其他用么?

很多时候,我们的业务场景就是需要某个数据只在某一时间段内存在,比如我们的短信验证码可能只在 1 分钟内有效,用户登录的 Token 可能只在 1 天内有效。

如果使用传统的数据库来处理的话,一般都是自己判断过期,这样更麻烦并且性能要差很多。

2.Redis 是如何判断数据是否过期的呢?

Redis 通过一个叫做过期字典(可以看作是 hash 表)来保存数据过期的时间。过期字典的键指向 Redis 数据库中的某个 key(键),过期字典的值是一个 long long 类型的整数,这个整数保存了 key 所指向的数据库键的过期时间(毫秒精度的 UNIX 时间戳)。

Redis 过期字典

Redis 过期字典

过期字典是存储在 redisDb 这个结构里的:

typedef struct redisDb {
    ...

    dict *dict;     //数据库键空间,保存着数据库中所有键值对
    dict *expires   // 过期字典,保存着键的过期时间
    ...
} redisDb;

在查询一个 key 的时候,Redis 首先检查该 key 是否存在于过期字典中(时间复杂度为 O(1)),如果不在就直接返回,在的话需要判断一下这个 key 是否过期,过期直接删除 key 然后返回 null。

3.Redis 过期 key 删除策略了解么?

如果假设你设置了一批 key 只能存活 1 分钟,那么 1 分钟后,Redis 是怎么对这批 key 进行删除的呢?

常用的过期数据的删除策略就下面这几种:

  1. 惰性删除:只会在取出/查询 key 的时候才对数据进行过期检查。这种方式对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。
  2. 定期删除:周期性地随机从设置了过期时间的 key 中抽查一批,然后逐个检查这些 key 是否过期,过期就删除 key。相比于惰性删除,定期删除对内存更友好,对 CPU 不太友好。
  3. 延迟队列:把设置过期时间的 key 放到一个延迟队列里,到期之后就删除 key。这种方式可以保证每个过期 key 都能被删除,但维护延迟队列太麻烦,队列本身也要占用资源。
  4. 定时删除:每个设置了过期时间的 key 都会在设置的时间到达时立即被删除。这种方法可以确保内存中不会有过期的键,但是它对 CPU 的压力最大,因为它需要为每个键都设置一个定时器。

Redis 采用的那种删除策略呢?

Redis 采用的是 定期删除+惰性/懒汉式删除 结合的策略,这也是大部分缓存框架的选择。定期删除对内存更加友好,惰性删除对 CPU 更加友好。两者各有千秋,结合起来使用既能兼顾 CPU 友好,又能兼顾内存友好。

下面是我们详细介绍一下 Redis 中的定期删除具体是如何做的。

Redis 的定期删除过程是随机的(周期性地随机从设置了过期时间的 key 中抽查一批),所以并不保证所有过期键都会被立即删除。这也就解释了为什么有的 key 过期了,并没有被删除。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。

另外,定期删除还会受到执行时间和过期 key 的比例的影响:执行时间太长就先不执行了,过期的key太多就循环执行

为什么定期删除不是把所有过期 key 都删除呢?

这样会对性能造成太大的影响。如果我们 key 数量非常庞大的话,挨个遍历检查是非常耗时的,会严重影响性能。Redis 设计这种策略的目的是为了平衡内存和性能。

为什么 key 过期之后不立马把它删掉呢?这样不是会浪费很多内存空间吗?

因为不太好办到,或者说这种删除方式的成本太高了。假如我们使用延迟队列作为删除策略,这样存在下面这些问题:

  1. 队列本身的开销可能很大:key 多的情况下,一个延迟队列可能无法容纳。
  2. 维护延迟队列太麻烦:修改 key 的过期时间就需要调整期在延迟队列中的位置,并且,还需要引入并发控制。

4.大量 key 集中过期怎么办?

当 Redis 中存在大量 key 在同一时间点集中过期时,可能会导致以下问题:

  • 请求延迟增加: Redis 在处理过期 key 时需要消耗 CPU 资源,如果过期 key 数量庞大,会导致 Redis 实例的 CPU 占用率升高,进而影响其他请求的处理速度,造成延迟增加。
  • 内存占用过高: 过期的 key 虽然已经失效,但在 Redis 真正删除它们之前,仍然会占用内存空间。如果过期 key 没有及时清理,可能会导致内存占用过高,甚至引发内存溢出。

为了避免这些问题,可以采取以下方案:

  1. 尽量避免 key 集中过期: 在设置键的过期时间时尽量随机一点。
  2. 开启 lazy free 机制: 修改 redis.conf 配置文件,将 lazyfree-lazy-expire 参数设置为 yes,即可开启 lazy free 机制。开启 lazy free 机制后,Redis 会在后台异步删除过期的 key,不会阻塞主线程的运行,从而降低对 Redis 性能的影响。

5.Redis 内存淘汰策略了解么?

当Redis的内存使用达到maxmemory限制时,会触发内存淘汰策略。Redis提供了多种内存淘汰策略

Redis 提供了 6 种内存淘汰策略:

  1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰。
  2. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰。
  3. volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰。
  4. allkeys-lru(least recently used):从数据集(server.db[i].dict)中移除最近最少使用的数据淘汰。
  5. allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰。
  6. no-eviction(默认内存淘汰策略):禁止驱逐数据,当内存不足以容纳新写入数据时,新写入操作会报错。

11.Redis性能优化的方法

1.使用批量操作减少网络传输

一个 Redis 命令的执行可以简化为以下 4 步:

  1. 发送命令
  2. 命令排队
  3. 命令执行
  4. 返回结果

其中,第 1 步和第 4 步耗费时间之和称为 Round Trip Time (RTT,往返时间) ,也就是数据在网络上传输的时间。

使用批量操作可以减少网络传输次数,进而有效减小网络开销,大幅减少 RTT。

另外,除了能减少 RTT 之外,发送一次命令的 socket I/O 成本也比较高(涉及上下文切换,存在read()write()系统调用),批量操作还可以减少 socket I/O 成本。

批量操作方法:
1.原生批量操作命令

Redis 中有一些原生支持批量操作的命令,比如:

  • MGET(获取一个或多个指定 key 的值)、MSET(设置一个或多个指定 key 的值)、
  • HMGET(获取指定哈希表中一个或者多个指定字段的值)、HMSET(同时将一个或多个 field-value 对设置到指定哈希表中)、
  • SADD(向指定集合添加一个或多个元素)
  • ……

不过,在 Redis 官方提供的分片集群解决方案 Redis Cluster 下,使用这些原生批量操作命令可能会存在一些小问题需要解决。就比如说 MGET 无法保证所有的 key 都在同一个 hash slot(哈希槽)上,MGET可能还是需要多次网络传输,原子操作也无法保证了。不过,相较于非批量操作,还是可以节省不少网络传输次数。

整个步骤的简化版如下(通常由 Redis 客户端实现,无需我们自己再手动实现):

  1. 找到 key 对应的所有 hash slot;
  2. 分别向对应的 Redis 节点发起 MGET 请求获取数据;
  3. 等待所有请求执行结束,重新组装结果数据,保持跟入参 key 的顺序一致,然后返回结果。

如果想要解决这个多次网络传输的问题,比较常用的办法是自己维护 key 与 slot 的关系。不过这样不太灵活,虽然带来了性能提升,但同样让系统复杂性提升。

2.pipeline

对于不支持批量操作的命令,我们可以利用 pipeline(流水线) 将一批 Redis 命令封装成一组,这些 Redis 命令会被一次性提交到 Redis 服务器,只需要一次网络传输。不过,需要注意控制一次批量操作的 元素个数(例如 500 以内,实际也和元素字节数有关),避免网络传输的数据量过大。

3.Lua 脚本

Lua 脚本同样支持批量操作多条命令。一段 Lua 脚本可以视作一条命令执行,可以看作是 原子操作 。也就是说,一段 Lua 脚本执行过程中不会有其他脚本或 Redis 命令同时执行,保证了操作不会被其他指令插入或打扰,这是 pipeline 所不具备的。

2.什么是大量key集中过期问题,如何解决

 问题:

定期删除执行过程中,如果突然遇到大量过期 key 的话,客户端请求必须等待定期清理过期 key 任务线程执行完成,因为这个这个定期任务线程是在 Redis 主线程中执行的。这就导致客户端请求没办法被及时处理,响应速度会比较慢。

如何解决:

  • 给 key 设置随机过期时间。
  • 开启 lazy-free(惰性删除/延迟释放) 。lazy-free 特性是 Redis 4.0 开始引入的,指的是让 Redis 采用异步方式延迟释放 key 使用的内存,将该操作交给单独的子线程处理,避免阻塞主线程。

3.产生Redis bigkey(大 Key)如何解决

1.什么是 bigkey?

简单来说,如果一个 key 对应的 value 所占用的内存比较大,那这个 key 就可以看作是 bigkey。具体多大才算大呢?有一个不是特别精确的参考标准:

  • String 类型的 value 超过 1MB
  • 复合类型(List、Hash、Set、Sorted Set 等)的 value 包含的元素超过 5000 个(不过,对于复合类型的 value 来说,不一定包含的元素越多,占用的内存就越多)。
2.bigkey 是怎么产生的?有什么危害?

bigkey 通常是由于下面这些原因产生的:

  • 程序设计不当,比如直接使用 String 类型存储较大的文件对应的二进制数据。
  • 对于业务的数据规模考虑不周到,比如使用集合类型的时候没有考虑到数据量的快速增长。
  • 未及时清理垃圾数据,比如哈希中冗余了大量的无用键值对。

bigkey 除了会消耗更多的内存空间和带宽,还会对性能造成比较大的影响。

Redis 常见阻塞原因总结这篇文章中我们提到:大 key 还会造成阻塞问题。具体来说,主要体现在下面三个方面:

  1. 客户端超时阻塞:由于 Redis 执行命令是单线程处理,然后在操作大 key 时会比较耗时,那么就会阻塞 Redis,从客户端这一视角看,就是很久很久都没有响应。
  2. 网络阻塞:每次获取大 key 产生的网络流量较大,如果一个 key 的大小是 1 MB,每秒访问量为 1000,那么每秒会产生 1000MB 的流量,这对于普通千兆网卡的服务器来说是灾难性的。
  3. 工作线程阻塞:如果使用 del 删除大 key 时,会阻塞工作线程,这样就没办法处理后续的命令。

大 key 造成的阻塞问题还会进一步影响到主从同步和集群扩容。

3.如何发现 bigkey?

1、使用 Redis 自带的 --bigkeys 参数来查找。

2、使用 Redis 自带的 SCAN 命令

3、借助开源工具分析 RDB 文件。

4、借助公有云的 Redis 分析服务。

4.如何处理 bigkey?

bigkey 的常见处理以及优化办法如下(这些方法可以配合起来使用):

  • 分割 bigkey:将一个 bigkey 分割为多个小 key。例如,将一个含有上万字段数量的 Hash 按照一定策略(比如二次哈希)拆分为多个 Hash。
  • 手动清理:Redis 4.0+ 可以使用 UNLINK 命令来异步删除一个或多个指定的 key。Redis 4.0 以下可以考虑使用 SCAN 命令结合 DEL 命令来分批次删除。
  • 采用合适的数据结构:例如,文件二进制数据不使用 String 保存、使用 HyperLogLog 统计页面 UV、Bitmap 保存状态信息(0/1)。
  • 开启 lazy-free(惰性删除/延迟释放) :lazy-free 特性是 Redis 4.0 开始引入的,指的是让 Redis 采用异步方式延迟释放 key 使用的内存,将该操作交给单独的子线程处理,避免阻塞主线程。

 4.Redis产生Redis hotkey(热 Key)的问题,如何解决

1.什么是 hotkey?

如果一个 key 的访问次数比较多且明显多于其他 key 的话,那这个 key 就可以看作是 hotkey(热 Key)。例如在 Redis 实例的每秒处理请求达到 5000 次,而其中某个 key 的每秒访问量就高达 2000 次,那这个 key 就可以看作是 hotkey。

hotkey 出现的原因主要是某个热点数据访问量暴增,如重大的热搜事件、参与秒杀的商品。

2.hotkey 有什么危害?

处理 hotkey 会占用大量的 CPU 和带宽,可能会影响 Redis 实例对其他请求的正常处理。此外,如果突然访问 hotkey 的请求超出了 Redis 的处理能力,Redis 就会直接宕机。这种情况下,大量请求将落到后面的数据库上,可能会导致数据库崩溃。

3.如何发现 hotkey?

1、使用 Redis 自带的 --hotkeys 参数来查找。

2、使用MONITOR 命令。

3、借助开源项目。

4、根据业务情况提前预估。

5、业务代码中记录分析。

6、借助公有云的 Redis 分析服务。

4.怎么处理hotkey?
  • 读写分离:主节点处理写请求,从节点处理读请求。
  • 使用 Redis Cluster:将热点数据分散存储在多个 Redis 节点上。
  • 二级缓存:hotkey 采用二级缓存的方式进行处理,将 hotkey 存放一份到 JVM 本地内存中(可以用 Caffeine)。

5.慢查询命令


1.为什么会有慢查询命令

我们知道一个 Redis 命令的执行可以简化为以下 4 步:

  1. 发送命令
  2. 命令排队
  3. 命令执行
  4. 返回结果

Redis 慢查询统计的是命令执行这一步骤的耗时,慢查询命令也就是那些命令执行时间较长的命令。

Redis 为什么会有慢查询命令呢?

Redis 中的大部分命令都是 O(1)时间复杂度,但也有少部分 O(n) 时间复杂度的命令,例如:

  • KEYS *:会返回所有符合规则的 key。
  • HGETALL:会返回一个 Hash 中所有的键值对。
  • LRANGE:会返回 List 中指定范围内的元素。
  • SMEMBERS:返回 Set 中的所有元素。
  • SINTER/SUNION/SDIFF:计算多个 Set 的交集/并集/差集。
  • ……

由于这些命令时间复杂度是 O(n),有时候也会全表扫描,随着 n 的增大,执行耗时也会越长。不过, 这些命令并不是一定不能使用,但是需要明确 N 的值。另外,有遍历的需求可以使用 HSCANSSCANZSCAN 代替。

除了这些 O(n)时间复杂度的命令可能会导致慢查询之外, 还有一些时间复杂度可能在 O(N) 以上的命令,导致慢查询

2.如何找到慢查询命令?

redis.conf 文件中,我们可以使用 slowlog-log-slower-than 参数设置耗时命令的阈值,并使用 slowlog-max-len 参数设置耗时命令的最大记录条数。

当 Redis 服务器检测到执行时间超过 slowlog-log-slower-than阈值的命令时,就会将该命令记录在慢查询日志(slow log) 中,这点和 MySQL 记录慢查询语句类似。当慢查询日志超过设定的最大记录条数之后,Redis 会把最早的执行命令依次舍弃。

获取慢查询日志的内容很简单,直接使用SLOWLOG GET 命令即可。

6.Redis内存碎片 

  1. 什么是内存碎片?为什么会有 Redis 内存碎片?
  2. 如何清理 Redis 内存碎片?

12.Redis生产问题(重要)

1.缓存穿透

1.什么是缓存穿透

缓存穿透说简单点就是大量请求的 key 是不合理的,根本不存在于缓存中,也不存在于数据库中 。这就导致这些请求直接到了数据库上,根本没有经过缓存这一层,对数据库造成了巨大的压力,可能直接就被这么多请求弄宕机了。

缓存穿透

缓存穿透

举个例子:某个黑客故意制造一些非法的 key 发起大量请求,导致大量请求落到数据库,结果数据库上也没有查到对应的数据。也就是说这些请求最终都落到了数据库上,对数据库造成了巨大的压力。

2.解决办法

1)缓存无效 key

如果缓存和数据库都查不到某个 key 的数据就写一个到 Redis 中去并设置过期时间,具体命令如下:SET key value EX 10086 。这种方式可以解决请求的 key 变化不频繁的情况,如果黑客恶意攻击,每次构建不同的请求 key,会导致 Redis 中缓存大量无效的 key 。很明显,这种方案并不能从根本上解决此问题。如果非要用这种方式来解决穿透问题的话,尽量将无效的 key 的过期时间设置短一点比如 1 分钟。

2)布隆过滤器

布隆过滤器是一个非常神奇的数据结构,通过它我们可以非常方便地判断一个给定数据是否存在于海量数据中。我们可以把它看作由二进制向量(或者说位数组)和一系列随机映射函数(哈希函数)两部分组成的数据结构。相比于我们平时常用的 List、Map、Set 等数据结构,它占用空间更少并且效率更高,但是缺点是其返回的结果是概率性的,而不是非常准确的。理论情况下添加到集合中的元素越多,误报的可能性就越大。并且,存放在布隆过滤器的数据不容易删除。

Bloom Filter 的简单原理示意图

Bloom Filter 的简单原理示意图

Bloom Filter 会使用一个较大的 bit 数组来保存所有的数据,数组中的每个元素都只占用 1 bit ,并且每个元素只能是 0 或者 1(代表 false 或者 true),这也是 Bloom Filter 节省内存的核心所在。这样来算的话,申请一个 100w 个元素的位数组只占用 1000000Bit / 8 = 125000 Byte = 125000/1024 KB ≈ 122KB 的空间。

位数组

位数组

具体是这样做的:把所有可能存在的请求的值都存放在布隆过滤器中,当用户请求过来,先判断用户发来的请求的值是否存在于布隆过滤器中。不存在的话,直接返回请求参数错误信息给客户端,存在的话才会走下面的流程。

加入布隆过滤器之后的缓存处理流程图如下。

加入布隆过滤器之后的缓存处理流程图

加入布隆过滤器之后的缓存处理流程图

更多关于布隆过滤器的详细介绍可以看看我的这篇原创:不了解布隆过滤器?一文给你整的明明白白! ,强烈推荐。

3)接口限流

根据用户或者 IP 对接口进行限流,对于异常频繁的访问行为,还可以采取黑名单机制,例如将异常 IP 列入黑名单。

后面提到的缓存击穿和雪崩都可以配合接口限流来解决,毕竟这些问题的关键都是有很多请求落到了数据库上造成数据库压力过大。

2.缓存击穿

1.什么是缓存击穿

缓存击穿中,请求的 key 对应的是 热点数据 ,该数据 存在于数据库中,但不存在于缓存中(通常是因为缓存中的那份数据已经过期) 。这就可能会导致瞬时大量的请求直接打到了数据库上,对数据库造成了巨大的压力,可能直接就被这么多请求弄宕机了。

缓存击穿

缓存击穿

举个例子:秒杀进行过程中,缓存中的某个秒杀商品的数据突然过期,这就导致瞬时大量对该商品的请求直接落到数据库上,对数据库造成了巨大的压力。

2.有哪些解决办法
  • 永不过期(不推荐):设置热点数据永不过期或者过期时间比较长。
  • 提前预热(推荐):针对热点数据提前预热,将其存入缓存中并设置合理的过期时间比如秒杀场景下的数据在秒杀结束之前不过期。
  • 加锁(看情况):在缓存失效后,通过设置互斥锁确保只有一个请求去查询数据库并更新缓存。

补充:缓存穿透和缓存击穿有什么区别?

缓存穿透中,请求的 key 既不存在于缓存中,也不存在于数据库中。

缓存击穿中,请求的 key 对应的是 热点数据 ,该数据 存在于数据库中,但不存在于缓存中(通常是因为缓存中的那份数据已经过期)

缓存击穿已经发生怎么办:

1.用互斥锁,只有一个请求能查数据库并更新缓存,其他请求等待。

2.降级+限流

触发高并发时,直接返回默认值或缓存旧数据,避免数据库崩溃。

3.缓存雪崩

1.什么是缓存雪崩

实际上,缓存雪崩描述的就是这样一个简单的场景:缓存在同一时间大面积的失效,导致大量的请求都直接落到了数据库上,对数据库造成了巨大的压力。 这就好比雪崩一样,摧枯拉朽之势,数据库的压力可想而知,可能直接就被这么多请求弄宕机了。

另外,缓存服务宕机也会导致缓存雪崩现象,导致所有的请求都落到了数据库上。

缓存雪崩

缓存雪崩

举个例子:数据库中的大量数据在同一时间过期,这个时候突然有大量的请求需要访问这些过期的数据。这就导致大量的请求直接落到数据库上,对数据库造成了巨大的压力

2.有什么解决方法

针对 Redis 服务不可用的情况:

  1. Redis 集群:采用 Redis 集群,避免单机出现问题整个缓存服务都没办法使用。Redis Cluster 和 Redis Sentinel 是两种最常用的 Redis 集群实现方案,详细介绍可以参考:Redis 集群详解(付费)
  2. 多级缓存:设置多级缓存,例如本地缓存+Redis 缓存的二级缓存组合,当 Redis 缓存出现问题时,还可以从本地缓存中获取到部分数据。

针对大量缓存同时失效的情况:

  1. 设置随机失效时间(可选):为缓存设置随机的失效时间,例如在固定过期时间的基础上加上一个随机值,这样可以避免大量缓存同时到期,从而减少缓存雪崩的风险。
  2. 提前预热(推荐):针对热点数据提前预热,将其存入缓存中并设置合理的过期时间比如秒杀场景下的数据在秒杀结束之前不过期。
  3. 持久缓存策略(看情况):虽然一般不推荐设置缓存永不过期,但对于某些关键性和变化不频繁的数据,可以考虑这种策略。
3.缓存预热如何实现

常见的缓存预热方式有两种:

  1. 使用定时任务,比如 xxl-job,来定时触发缓存预热的逻辑,将数据库中的热点数据查询出来并存入缓存中。
  2. 使用消息队列,比如 Kafka,来异步地进行缓存预热,将数据库中的热点数据的主键或者 ID 发送到消息队列中,然后由缓存服务消费消息队列中的数据,根据主键或者 ID 查询数据库并更新缓存。
4.缓存雪崩和缓存击穿的区别

缓存雪崩和缓存击穿比较像,但缓存雪崩导致的原因是缓存中的大量或者所有数据失效,缓存击穿导致的原因主要是某个热点数据不存在与缓存中(通常是因为缓存中的那份数据已经过期)。

5.如何保证缓存和数据库的一致性

细说的话可以扯很多,但是我觉得其实没太大必要(小声 BB:很多解决方案我也没太弄明白)。我个人觉得引入缓存之后,如果为了短时间的不一致性问题,选择让系统设计变得更加复杂的话,完全没必要。

下面单独对 Cache Aside Pattern(旁路缓存模式) 来聊聊。

Cache Aside Pattern 中遇到写请求是这样的:更新数据库,然后直接删除缓存 。

如果更新数据库成功,而删除缓存这一步失败的情况的话,简单说有两个解决方案:

  1. 缓存失效时间变短(不推荐,治标不治本):我们让缓存数据的过期时间变短,这样的话缓存就会从数据库中加载数据。另外,这种解决办法对于先操作缓存后操作数据库的场景不适用。
  2. 增加缓存更新重试机制(常用):如果缓存服务当前不可用导致缓存删除失败的话,我们就隔一段时间进行重试,重试次数可以自己定。不过,这里更适合引入消息队列实现异步重试,将删除缓存重试的消息投递到消息队列,然后由专门的消费者来重试,直到成功。虽然说多引入了一个消息队列,但其整体带来的收益还是要更高一些。

13.Redis事务

 1.什么是 Redis 事务?

Redis 事务提供了一种将多个命令请求打包的功能。然后,再按顺序执行打包的所有命令,并且不会被中途打断。

2.如何使用 Redis 事务?

Redis 可以通过 MULTIEXECDISCARD 和 WATCH 等命令来实现事务(Transaction)功能。

MULTI 命令后可以输入多个命令,Redis 不会立即执行这些命令,而是将它们放到队列,当调用了 EXEC 命令后,再执行所有的命令。

这个过程是这样的:

  1. 开始事务(MULTI);
  2. 命令入队(批量操作 Redis 的命令,先进先出(FIFO)的顺序执行);
  3. 执行事务(EXEC)。

你也可以通过 DISCARD 命令取消一个事务,它会清空事务队列中保存的所有命令。

你可以通过WATCH 命令监听指定的 Key,当调用 EXEC 命令执行事务时,如果一个被 WATCH 命令监视的 Key 被 其他客户端/Session 修改的话,整个事务都不会被执行。

3.Redis 事务支持原子性吗?

Redis 的事务和我们平时理解的关系型数据库的事务不同。我们知道事务具有四大特性:1. 原子性2. 隔离性3. 持久性4. 一致性

  1. 原子性(Atomicity): 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
  2. 隔离性(Isolation): 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
  3. 持久性(Durability): 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。
  4. 一致性(Consistency): 执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;

Redis 事务在运行错误的情况下,除了执行过程中出现错误的命令外,其他命令都能正常执行。并且,Redis 事务是不支持回滚(roll back)操作的。因此,Redis 事务其实是不满足原子性的。

4.Redis 事务支持持久性吗?

Redis 不同于 Memcached 的很重要一点就是,Redis 支持持久化,而且支持 3 种持久化方式:

  • 快照(snapshotting,RDB)
  • 只追加文件(append-only file, AOF)
  • RDB 和 AOF 的混合持久化(Redis 4.0 新增)

与 RDB 持久化相比,AOF 持久化的实时性更好。在 Redis 的配置文件中存在三种不同的 AOF 持久化方式( fsync策略),它们分别是:

appendfsync always    #每次有数据修改发生时都会调用fsync函数同步AOF文件,fsync完成后线程返回,这样会严重降低Redis的速度
appendfsync everysec  #每秒钟调用fsync函数同步一次AOF文件
appendfsync no        #让操作系统决定何时进行同步,一般为30秒一次

AOF 持久化的fsync策略为 no、everysec 时都会存在数据丢失的情况 。always 下可以基本是可以满足持久性要求的,但性能太差,实际开发过程中不会使用。

5.如何解决 Redis 事务的缺陷?

Redis 从 2.6 版本开始支持执行 Lua 脚本,它的功能和事务非常类似。我们可以利用 Lua 脚本来批量执行多条 Redis 命令,这些 Redis 命令会被提交到 Redis 服务器一次性执行完成,大幅减小了网络开销。

一段 Lua 脚本可以视作一条命令执行,一段 Lua 脚本执行过程中不会有其他脚本或 Redis 命令同时执行,保证了操作不会被其他指令插入或打扰。

不过,如果 Lua 脚本运行时出错并中途结束,出错之后的命令是不会被执行的。并且,出错之前执行的命令是无法被撤销的,无法实现类似关系型数据库执行失败可以回滚的那种原子性效果。因此, 严格来说的话,通过 Lua 脚本来批量执行 Redis 命令实际也是不完全满足原子性的。

如果想要让 Lua 脚本中的命令全部执行,必须保证语句语法和命令都是对的。

6.reids和mysql事务对比

mysql:

  • 支持回滚(ROLLBACK),保证数据一致性。
  • 基于 MVCC(多版本并发控制) 进行事务隔离,避免读写冲突。
  • 支持不同的隔离级别(READ COMMITTED、REPEATABLE READ、SERIALIZABLE 等)。

redis:

  • 命令队列(MULTI 开始,EXEC 执行),在 EXEC 之前所有命令都只是排队。
  • 不支持回滚(执行失败不会撤销已执行的命令)。
  • 提供 WATCH 机制(类似乐观锁),可用于控制并发。

redis:MULTI开启事务,EXEC提交事务 watch实现并发控制

14.大key

Redis的大Key问题是什么?

Redis大key问题指的是某个key对应的value值所占的内存空间比较大,导致Redis的性能下降、内存不足、数据不均衡以及主从同步延迟等问题。

到底多大的数据量才算是大key?

没有固定的判别标准,通常认为字符串类型的key对应的value值占用空间大于1M,或者集合类型的k元素数量超过1万个,就算是大key。

Redis大key问题的定义及评判准则并非一成不变,而应根据Redis的实际运用以及业务需求来综合评估。

例如,在高并发且低延迟的场景中,仅10kb可能就已构成大key;然而在低并发、高容量的环境下,大key的界限可能在100kb。因此,在设计与运用Redis时,要依据业务需求与性能指标来确立合理的大key阈值。

大Key问题的缺点?

  • 内存占用过高。大Key占用过多的内存空间,可能导致可用内存不足,从而触发内存淘汰策略。在极端情况下,可能导致内存耗尽,Redis实例崩溃,影响系统的稳定性。
  • 性能下降。大Key会占用大量内存空间,导致内存碎片增加,进而影响Redis的性能。对于大Key的操作,如读取、写入、删除等,都会消耗更多的CPU时间和内存资源,进一步降低系统性能。
  • 阻塞其他操作。某些对大Key的操作可能会导致Redis实例阻塞。例如,使用DEL命令删除一个大Key时,可能会导致Redis实例在一段时间内无法响应其他客户端请求,从而影响系统的响应时间和吞吐量。
  • 网络拥塞。每次获取大key产生的网络流量较大,可能造成机器或局域网的带宽被打满,同时波及其他服务。例如:一个大key占用空间是1MB,每秒访问1000次,就有1000MB的流量。
  • 主从同步延迟。当Redis实例配置了主从同步时,大Key可能导致主从同步延迟。由于大Key占用较多内存,同步过程中需要传输大量数据,这会导致主从之间的网络传输延迟增加,进而影响数据一致性。
  • 数据倾斜。在Redis集群模式中,某个数据分片的内存使用率远超其他数据分片,无法使数据分片的内存资源达到均衡。另外也可能造成Redis内存达到maxmemory参数定义的上限导致重要的key被逐出,甚至引发内存溢出。

Redis大key如何解决?

  • 对大Key进行拆分。例如将含有数万成员的一个HASH Key拆分为多个HASH Key,并确保每个Key的成员数量在合理范围。在Redis集群架构中,拆分大Key能对数据分片间的内存平衡起到显著作用。
  • 对大Key进行清理。将不适用Redis能力的数据存至其它存储,并在Redis中删除此类数据。注意,要使用异步删除。
  • 监控Redis的内存水位。可以通过监控系统设置合理的Redis内存报警阈值进行提醒,例如Redis内存使用率超过70%、Redis的内存在1小时内增长率超过20%等。
  • 对过期数据进行定期清。堆积大量过期数据会造成大Key的产生,例如在HASH数据类型中以增量的形式不断写入大量数据而忽略了数据的时效性。可以通过定时任务的方式对失效数据进行清理。

15.集群

Redis主从同步中的增量和完全同步怎么实现?

完全同步

完全同步发生在以下几种情况:

  • 初次同步:当一个从服务器(slave)首次连接到主服务器(master)时,会进行一次完全同步。
  • 从服务器数据丢失:如果从服务器数据由于某种原因(如断电)丢失,它会请求进行完全同步。
  • 主服务器数据发生变化:如果从服务器长时间未与主服务器同步,导致数据差异太大,也可能触发完全同步。

主从服务器间的第一次同步的过程可分为三个阶段:

  • 第一阶段是建立链接、协商同步;
  • 第二阶段是主服务器同步数据给从服务器;
  • 第三阶段是主服务器发送新写操作命令给从服务器。

img

实现过程

  1. 从服务器发送SYNC命令:从服务器向主服务器发送SYNC命令,请求开始同步。
  2. 主服务器生成RDB快照:接收到SYNC命令后,主服务器会保存当前数据集的状态到一个临时文件,这个过程称为RDB(Redis Database)快照。
  3. 传输RDB文件:主服务器将生成的RDB文件发送给从服务器。
  4. 从服务器接收并应用RDB文件:从服务器接收RDB文件后,会清空当前的数据集,并载入RDB文件中的数据。
  5. 主服务器记录写命令:在RDB文件生成和传输期间,主服务器会记录所有接收到的写命令到replication backlog buffer
  6. 传输写命令:一旦RDB文件传输完成,主服务器会将replication backlog buffer中的命令发送给从服务器,从服务器会执行这些命令,以保证数据的一致性。

增量同步

增量同步允许从服务器从断点处继续同步,而不是每次都进行完全同步。它基于PSYNC命令,使用了运行ID(run ID)和复制偏移量(offset)的概念。

img

主要有三个步骤:

  • 从服务器在恢复网络后,会发送 psync 命令给主服务器,此时的 psync 命令里的 offset 参数不是 -1;
  • 主服务器收到该命令后,然后用 CONTINUE 响应命令告诉从服务器接下来采用增量复制的方式同步数据;
  • 然后主服务将主从服务器断线期间,所执行的写命令发送给从服务器,然后从服务器执行这些命令。

那么关键的问题来了,主服务器怎么知道要将哪些增量数据发送给从服务器呢?

答案藏在这两个东西里:

  • repl_backlog_buffer,是一个「环形」缓冲区,用于主从服务器断连后,从中找到差异的数据;
  • replication offset,标记上面那个缓冲区的同步进度,主从服务器都有各自的偏移量,主服务器使用 master_repl_offset 来记录自己「」到的位置,从服务器使用 slave_repl_offset 来记录自己「」到的位置。

那 repl_backlog_buffer 缓冲区是什么时候写入的呢?

在主服务器进行命令传播时,不仅会将写命令发送给从服务器,还会将写命令写入到 repl_backlog_buffer 缓冲区里,因此 这个缓冲区里会保存着最近传播的写命令。

网络断开后,当从服务器重新连上主服务器时,从服务器会通过 psync 命令将自己的复制偏移量 slave_repl_offset 发送给主服务器,主服务器根据自己的 master_repl_offset 和 slave_repl_offset 之间的差距,然后来决定对从服务器执行哪种同步操作:

  • 如果判断出从服务器要读取的数据还在 repl_backlog_buffer 缓冲区里,那么主服务器将采用增量同步的方式;
  • 相反,如果判断出从服务器要读取的数据已经不存在 repl_backlog_buffer 缓冲区里,那么主服务器将采用全量同步的方式。

当主服务器在 repl_backlog_buffer 中找到主从服务器差异(增量)的数据后,就会将增量的数据写入到 replication buffer 缓冲区,这个缓冲区我们前面也提到过,它是缓存将要传播给从服务器的命令。

repl_backlog_buffer 缓行缓冲区的默认大小是 1M,并且由于它是一个环形缓冲区,所以当缓冲区写满后,主服务器继续写入的话,就会覆盖之前的数据。因此,当主服务器的写入速度远超于从服务器的读取速度,缓冲区的数据一下就会被覆盖。

那么在网络恢复时,如果从服务器想读的数据已经被覆盖了,主服务器就会采用全量同步,这个方式比增量同步的性能损耗要大很多。

因此,为了避免在网络恢复时,主服务器频繁地使用全量同步的方式,我们应该调整下 repl_backlog_buffer 缓冲区大小,尽可能的大一些,减少出现从服务器要读取的数据被覆盖的概率,从而使得主服务器采用增量同步的方式。

redis主从和集群可以保证数据一致性吗 ?

redis 主从和集群在CAP理论都属于AP模型,即在面临网络分区时选择保证可用性和分区容忍性,而牺牲了强一致性。这意味着在网络分区的情况下,Redis主从复制和集群可以继续提供服务并保持可用,但可能会出现部分节点之间的数据不一致。

哨兵机制原理是什么?

在 Redis 的主从架构中,由于主从模式是读写分离的,如果主节点(master)挂了,那么将没有主节点来服务客户端的写操作请求,也没有主节点给从节点(slave)进行数据同步了。

img

这时如果要恢复服务的话,需要人工介入,选择一个「从节点」切换为「主节点」,然后让其他从节点指向新的主节点,同时还需要通知上游那些连接 Redis 主节点的客户端,将其配置中的主节点 IP 地址更新为「新主节点」的 IP 地址。

这样也不太“智能”了,要是有一个节点能监控「主节点」的状态,当发现主节点挂了,它自动将一个「从节点」切换为「主节点」的话,那么可以节省我们很多事情啊!

Redis 在 2.8 版本以后提供的哨兵(Sentinel)机制,它的作用是实现主从节点故障转移。它会监测主节点是否存活,如果发现主节点挂了,它就会选举一个从节点切换为主节点,并且把新主节点的相关信息通知给从节点和客户端。

哨兵其实是一个运行在特殊模式下的 Redis 进程,所以它也是一个节点。从“哨兵”这个名字也可以看得出来,它相当于是“观察者节点”,观察的对象是主从节点。

当然,它不仅仅是观察那么简单,在它观察到有异常的状况下,会做出一些“动作”,来修复异常状态。

哨兵节点主要负责三件事情:监控、选主、通知

img

哨兵机制的选主节点的算法介绍一下

当redis集群的主节点故障时,Sentinel集群将从剩余的从节点中选举一个新的主节点,有以下步骤:

  1. 故障节点主观下线
  2. 故障节点客观下线
  3. Sentinel集群选举Leader
  4. Sentinel Leader决定新主节点
  1. 故障节点主观下线

Sentinel集群的每一个Sentinel节点会定时对redis集群的所有节点发心跳包检测节点是否正常。如果一个节点在down-after-milliseconds时间内没有回复Sentinel节点的心跳包,则该redis节点被该Sentinel节点主观下线。

img

  1. 故障节点客观下线

当节点被一个Sentinel节点记为主观下线时,并不意味着该节点肯定故障了,还需要Sentinel集群的其他Sentinel节点共同判断为主观下线才行。

该Sentinel节点会询问其他Sentinel节点,如果Sentinel集群中超过quorum数量的Sentinel节点认为该redis节点主观下线,则该redis客观下线。

img

如果客观下线的redis节点是从节点或者是Sentinel节点,则操作到此为止,没有后续的操作了;如果客观下线的redis节点为主节点,则开始故障转移,从从节点中选举一个节点升级为主节点。

  1. Sentinel集群选举Leader

如果需要从redis集群选举一个节点为主节点,首先需要从Sentinel集群中选举一个Sentinel节点作为Leader。

img

每一个Sentinel节点都可以成为Leader,当一个Sentinel节点确认redis集群的主节点主观下线后,会请求其他Sentinel节点要求将自己选举为Leader。被请求的Sentinel节点如果没有同意过其他Sentinel节点的选举请求,则同意该请求(选举票数+1),否则不同意。

如果一个Sentinel节点获得的选举票数达到Leader最低票数(quorum和Sentinel节点数/2+1的最大值),则该Sentinel节点选举为Leader;否则重新进行选举。

img

举个例子,假设哨兵节点有 3 个,quorum 设置为 2,那么任何一个想成为 Leader 的哨兵只要拿到 2 张赞成票,就可以选举成功了。如果没有满足条件,就需要重新进行选举。

  1. Sentinel Leader决定新主节点

当Sentinel集群选举出Sentinel Leader后,由Sentinel Leader从redis从节点中选择一个redis节点作为主节点:

  1. 过滤故障的节点
  2. 选择优先级slave-priority最大的从节点作为主节点,如不存在则继续
  3. 选择复制偏移量(数据写入量的字节,记录写了多少数据。主服务器会把偏移量同步给从服务器,当主从的偏移量一致,则数据是完全同步)最大的从节点作为主节点,如不存在则继续
  4. 选择runid(redis每次启动的时候生成随机的runid作为redis的标识)最小的从节点作为主节点

img

Redis集群的模式了解吗 优缺点了解吗

当 Redis 缓存数据量大到一台服务器无法缓存时,就需要使用 Redis 切片集群(Redis Cluster )方案,它将数据分布在不同的服务器上,以此来降低系统对单主节点的依赖,从而提高 Redis 服务的读写性能。

Redis Cluster 方案采用哈希槽(Hash Slot),来处理数据和节点之间的映射关系。在 Redis Cluster 方案中,一个切片集群共有 16384 个哈希槽,这些哈希槽类似于数据分区,每个键值对都会根据它的 key,被映射到一个哈希槽中,具体执行过程分为两大步:

  • 根据键值对的 key,按照 CRC16 算法计算一个 16 bit 的值。
  • 再用 16bit 值对 16384 取模,得到 0~16383 范围内的模数,每个模数代表一个相应编号的哈希槽。

接下来的问题就是,这些哈希槽怎么被映射到具体的 Redis 节点上的呢?有两种方案:

  • 平均分配: 在使用 cluster create 命令创建 Redis 集群时,Redis 会自动把所有哈希槽平均分布到集群节点上。比如集群中有 9 个节点,则每个节点上槽的个数为 16384/9 个。
  • 手动分配: 可以使用 cluster meet 命令手动建立节点间的连接,组成集群,再使用 cluster addslots 命令,指定每个节点上的哈希槽个数。

为了方便你的理解,我通过一张图来解释数据、哈希槽,以及节点三者的映射分布关系。

img

上图中的切片集群一共有 2 个节点,假设有 4 个哈希槽(Slot 0~Slot 3)时,我们就可以通过命令手动分配哈希槽,比如节点 1 保存哈希槽 0 和 1,节点 2 保存哈希槽 2 和 3。

redis-cli -h 192.168.1.10 –p 6379 cluster addslots 0,1
redis-cli -h 192.168.1.11 –p 6379 cluster addslots 2,3

然后在集群运行的过程中,key1 和 key2 计算完 CRC16 值后,对哈希槽总个数 4 进行取模,再根据各自的模数结果,就可以被映射到哈希槽 1(对应节点1) 和 哈希槽 2(对应节点2)。

需要注意的是,在手动分配哈希槽时,需要把 16384 个槽都分配完,否则 Redis 集群无法正常工作。

Redis集群模式优点/缺点

优点:

  • 高可用性:Redis集群最主要的优点是提供了高可用性,节点之间采用主从复制机制,可以保证数据的持久性和容错能力,哪怕其中一个节点挂掉,整个集群还可以继续工作。
  • **高性能:**Redis集群采用分片技术,将数据分散到多个节点,从而提高读写性能。当业务访问量大到单机Redis无法满足时,可以通过添加节点来增加集群的吞吐量。
  • **扩展性好:**Redis集群的扩展性非常好,可以根据实际需求动态增加或减少节点,从而实现可扩展性。集群模式中的某些节点还可以作为代理节点,自动转发请求,增加数据模式的灵活度和可定制性。

缺点:

  • **部署和维护较复杂:**Redis集群的部署和维护需要考虑到分片规则、节点的布置、主从配置以及故障处理等多个方面,需要较强的技术支持,增加了节点异常处理的复杂性和成本。
  • **集群同步问题:**当某些节点失败或者网络出故障,集群中数据同步的问题也会出现。数据同步的复杂度和工作量随着节点的增加而增加,同步时间也较长,导致一定的读写延迟。
  • **数据分片限制:**Redis集群的数据分片也限制了一些功能的实现,如在一个key上修改多次,可能会因为该key所在的节点位置变化而失败。此外,由于将数据分散存储到各个节点,某些操作不能跨节点实现,不同节点之间的一些操作需要额外注意。

16.哈希槽(redis集群用)

一个 redis 集群包含 16384 个哈希槽(hash slot),数据库中的每个数据都属于这16384个哈希槽中的一个。集群使用公式 CRC16(key) % 16384 来计算键 key 属于哪个槽。集群中的每一个节点负责处理一部分哈希槽。

一个哈希槽可以存储多个键值对,通过内部的数据结构(如链表、树等)来处理和存储这些数据。

哈希槽的优点:

1.这允许轻松地添加和删除集群中的节点。例如,如果我想添加一个新节点D,我需要将节点A,B,C中的一些散列槽移动到D。同样,如果我想从集群中删除节点A,我可以只移动由A使用的散列槽到B和C,当节点A将为空时,我可以将它从群集中彻底删除。

因为将散列槽从一个节点移动到另一个节点不需要停机操作,添加和移除节点或更改节点占用的散列槽的百分比也不需要任何停机时间

17.一致性哈希(RPC框架Dubbo用来选择服务提供者,分布式数据库)

1 什么是一致性哈希?

一致性哈希(Consistent Hash)算法是1997年提出,是一种特殊的哈希算法,目的是解决分布式系统的数据分区问题:当分布式集群移除或者添加一个服务器时,必须尽可能小地改变已存在的服务请求与处理请求服务器之间的映射关系。

2 一致性哈希主要解决问题

我们知道,传统的按服务器节点数量取模在集群扩容和收缩时存在一定的局限性。而一致性哈希算法正好解决了简单哈希算法在分布式集群中存在的动态伸缩的问题。降低节点上下线的过程中带来的数据迁移成本,同时节点数量的变化与分片原则对于应用系统来说是无感的,使上层应用更专注于领域内逻辑的编写,使得整个系统架构能够动态伸缩,更加灵活方便。

3、一致性哈希的原理

3.1 算法原理

前面介绍的取模算法虽然使用简单,但缺陷也很明显,如果服务器中保存有服务请求对应的数据,那么如果重新计算请求的哈希值,会造成缓存的雪崩的问题。这种情况在分布式系统中是非常糟糕的。一个设计良好的分布式系统应该具有良好的单调性,即服务器的添加与移除不会造成大量的哈希重定位,而一致性哈希恰好可以解决这个问题 。

其实,一致性哈希算法本质上也是一种取模算法。只不过前面介绍的取模算法是按服务器数量取模,而一致性哈希算法是对固定值2^32取模,这就使得一致性算法具备良好的单调性:不管集群中有多少个节点,只要key值固定,那所请求的服务器节点也同样是固定的。其算法的工作原理如下:

  1. 一致性哈希算法将整个哈希值空间映射成一个虚拟的圆环,整个哈希空间的取值范围为0~2^32-1;
  2. 计算各服务器节点的哈希值,并映射到哈希环上;
  3. 将服务发来的数据请求使用哈希算法算出对应的哈希值;
  4. 将计算的哈希值映射到哈希环上,同时沿圆环顺时针方向查找,遇到的第一台服务器就是所对应的处理请求服务器。
  5. 当增加或者删除一台服务器时,受影响的数据仅仅是新添加或删除的服务器到其环空间中前一台的服务器(也就是顺着逆时针方向遇到的第一台服务器)之间的数据,其他都不会受到影响。

综上所述,一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性 。

3.2 深入剖析

说了那么多,可能你还是云里雾里的,那么接下来我们详细剖析一致性哈希的实现原理。

3.2.1 哈希环

首先,一致性哈希算法将整个哈希值空间映射成一个虚拟的圆环。整个哈希空间的取值范围为0~2^32-1,按顺时针方向开始从0~2^32-1排列,最后的节点2^32-1在0开始位置重合,形成一个虚拟的圆环。如下图所示:

image.png

3.2.2 服务器映射到哈希环

接下来,将服务器节点映射到哈希环上对应的位置。我们可以对服务器IP地址进行哈希计算,哈希计算后的结果对2^32取模,结果一定是一个0到2^32-1之间的整数。最后将这个整数映射在哈希环上,整数的值就代表了一个服务器节点的在哈希环上的位置。即:hash(服务器ip)% 2^32。下面我们依次将node0、node1、node2三个缓存服务器映射到哈希环上,如下图所示:

image.png

3.2.3 对象key映射到服务器

当服务器接收到数据请求时,首先需要计算请求Key的哈希值;然后将计算的哈希值映射到哈希环上的具体位置;接下来,从这个位置沿着哈希环顺时针查找,遇到的第一个节点就是key对应的节点;最后,将请求发送到具体的服务器节点执行数据操作。

假设我们有“key-01:张三”、“key-02:李四”、“key-03:王五”三条缓存数据。经过哈希算法计算后,映射到哈希环上的位置如下图所示:

image.png

如上图所示,通过哈希计算后,key-01顺时针寻找将找到node0,key-02顺时针寻找将找到node1,key-03顺时针寻找将找到node2。最后,请求找到的服务器节点执行具体的业务操作。

以上便是一致性哈希算法的工作原理。

4、服务器扩容&缩容

前面介绍了一致性哈希算法的工作原理,那么,一致性哈希算法如何避免服务器动态伸缩的问题的呢?

4.1 服务器缩容

服务器缩容就是减少集群中服务器节点的数量或是集群中某个节点故障。假设,集群中的某个节点故障,原本映射到该节点的请求,会找到哈希环中的下一个节点,数据也同样被重新分配至下一个节点,其它节点的数据和请求不受任何影响。这样就确保节点发生故障时,集群能保持正常稳定。如下图所示:

image.png

如上图所示:节点node2发生故障时,数据key-01和key-02不会受到影响,只有key-03的请求被重定位到node0。在一致性哈希算法中,如果某个节点宕机不可用了,那么受影响的数据仅仅是会寻址到此节点和前一节点之间的数据。其他哈希环上的数据不会受到影响。

4.2 服务器扩容

服务器扩容就是集群中需要增加一个新的数据节点,假设,由于需要缓存的数据量太大,必须对集群进行扩容增加一个新的数据节点。此时,只需要计算新节点的哈希值并将新的节点加入到哈希环中,然后将哈希环中从上一个节点到新节点的数据映射到新的数据节点即可。其他节点数据不受影响,具体如下图所示:

image.png

如上图所示,加入新的node3节点后,key-01、key-02不受影响,只有key-03的寻址被重定位到新节点node3,受影响的数据仅仅是会寻址到新节点和前一节点之间的数据。

通过一致性哈希算法,集群扩容或缩容时,只需要重新定位哈希环空间内的一小部分数据。其他数据保持不变。当节点数越多的时候,使用哈希算法时,需要迁移的数据就越多,使用一致哈希时,需要迁移的数据就越少。所以,一致哈希算法具有较好的容错性和可扩展性。

5、数据倾斜与虚拟节点

5.1 什么是数据倾斜?

前面说了一致性哈希算法的原理以及扩容缩容的问题。但是,由于哈希计算的随机性,导致一致性哈希算法存在一个致命问题:数据倾斜,,也就是说大多数访问请求都会集中少量几个节点的情况。特别是节点太少情况下,容易因为节点分布不均匀造成数据访问的冷热不均。这就失去了集群和负载均衡的意义。如下图所示:

image.png

如上图所示,key-1、key-2、key-3可能被映射到同一个节点node0上。导致node0负载过大,而node1和node2却很空闲的情况。这有可能导致个别服务器数据和请求压力过大和崩溃,进而引起集群的崩溃。

5.2 如何解决数据倾斜?

为了解决数据倾斜的问题,一致性哈希算法引入了虚拟节点机制(也是用哈希算法生成虚拟节点),即对每一个物理服务节点映射多个虚拟节点,将这些虚拟节点计算哈希值并映射到哈希环上,当请求找到某个虚拟节点后,将被重新映射到具体的物理节点。虚拟节点越多,哈希环上的节点就越多,数据分布就越均匀,从而避免了数据倾斜的问题。

说起来可能比较复杂,一句话概括起来就是:原有的节点、数据定位的哈希算法不变,只是多了一步虚拟节点到实际节点的映射。具体如下图所示:

image.png

如上图所示,我们可以在服务器ip或主机名的后面增加编号来实现,将全部的虚拟节点加入到哈希环中,增加了节点后,数据在哈希环上的分布就相对均匀了。当有访问请求寻址到node0-1这个虚拟节点时,将被重新映射到物理节点node0。

18.多级缓存的设计思路:面试就说是本地缓存+分布式缓存

多级缓存(Multi-Level Cache,MLC)是一种分层存储数据的策略,常见于数据库、高性能计算和分布式系统中。它通过分层存储来提高访问速度、减少数据库压力,并优化成本。


1. 为什么需要多级缓存?

  • 访问速度:不同层级的缓存有不同的访问速度,越靠近 CPU/用户,访问速度越快
  • 存储成本:高性能缓存(如 L1、L2 缓存、Redis)成本高,不能无限扩展,而低成本存储(如数据库、磁盘)访问速度慢。
  • 数据一致性:通过分层设计,减少缓存穿透、击穿和雪崩问题。

2. 多级缓存的层次结构

常见的多级缓存架构:

用户请求 -> L1(本地缓存) -> L2(分布式缓存) -> L3(数据库) -> L4(远程存储)
层级示例特点优点缺点
L1:本地缓存(应用内缓存)Java ConcurrentHashMap、Caffeine、Guava Cache进程内缓存,存储最近访问的数据访问最快(纳秒级),无网络开销容量小,不可共享
L2:分布式缓存Redis、Memcached所有服务共享的缓存访问快(微秒级),支持高并发需要维护缓存一致性
L3:数据库MySQL、PostgreSQL持久化存储持久化,支持复杂查询访问慢(毫秒级),高并发时压力大
L4:远程存储HDFS、S3、冷存储归档、长期存储存储成本低访问最慢(秒级)

3. 多级缓存的设计思路:面试就说是本地缓存+分布式缓存

✅ 1. 选择合适的缓存层次

  • 低延迟场景(如高频查询)→ L1 本地缓存
  • 共享数据(如用户会话)→ L2 分布式缓存
  • 业务数据(如订单、库存)→ L3 数据库
  • 长期存储(如日志、历史数据)→ L4 远程存储

✅ 2. 确定缓存数据的生命周期

  • TTL(Time To Live):设置缓存数据的生存时间,防止过期数据长期驻留。
  • LRU/LFU 过期策略
    • LRU(Least Recently Used):优先淘汰最近最少使用的数据。
    • LFU(Least Frequently Used):优先淘汰访问频率最低的数据。

✅ 3. 处理缓存一致性

缓存与数据库数据可能会不一致,常见的解决方案:

  1. Cache Aside(旁路缓存)(最常用)
    • :先查缓存,若未命中,则查询数据库并更新缓存。
    • :更新数据库后,删除缓存(而不是更新缓存,减少脏数据)。
    // 读取数据
    String value = redis.get(key);
    if (value == null) {
        value = db.query(key);
        redis.set(key, value, TTL);
    }
    
  2. 延时双删:删除 Redis 缓存 更新 MySQL 数据 延迟一段时间(如 500ms) 再次删除 Redis 缓存

为什么要延时?

  • 在数据库更新后,可能存在并发请求,某些请求可能会先查询缓存,如果缓存被提前写回(缓存重建),那么会再次写入旧数据。
  • 延时 500ms~1s,让大部分并发请求执行完毕,确保数据库数据已经稳定。

✅ 4. 解决缓存问题

问题原因解决方案
缓存穿透请求的数据不存在,导致每次都查数据库布隆过滤器、设置空缓存
缓存击穿热点数据过期,瞬时大量请求直接打到数据库互斥锁(setnx),提前预热
缓存雪崩大量缓存同时过期,数据库被压垮过期时间加随机数,分布式限流

4. 典型应用场景

  • 电商系统:L1 本地缓存存储热销商品,L2 Redis 缓存用户购物车,L3 MySQL 存订单,L4 归档历史订单到 S3。
  • 高并发 API:L1 本地缓存存储 API 配置,L2 Redis 存热门请求,L3 数据库存日志。

5. 结论

多级缓存通过 L1(本地) → L2(分布式) → L3(数据库) → L4(远程存储)优化数据访问速度和成本
不同层次的缓存有不同的适用场景,缓存策略(TTL、LRU、Cache Aside)要根据业务需求设计
合理处理缓存一致性、缓存穿透/击穿/雪崩问题,提高系统稳定性。 🚀

四.Java集合

1.java集合框架

Java 集合主要是由两大接口派生而来:一个是 Collection接口,主要用于存放单一元素;另一个是 Map 接口,主要用于存放键值对。对于Collection 接口,下面又有三个主要的子接口:ListSetQueue

2.说说 List, Set, Queue, Map 四者的区别?

  • List(对付顺序的好帮手): 存储的元素是有序的、可重复的。
  • Set(注重独一无二的性质): 存储的元素不可重复的。
  • Queue(实现排队功能的叫号机): 按特定的排队规则来确定先后顺序,存储的元素是有序的、可重复的。
  • Map(用 key 来搜索的专家): 使用键值对(key-value)存储,类似于数学上的函数 y=f(x),"x" 代表 key,"y" 代表 value,key 是无序的、不可重复的,value 是无序的、可重复的,每个键最多映射到一个值。

3.集合框架底层数据结构总结

List
  • ArrayListObject[] 数组。详细可以查看:ArrayList 源码分析
  • VectorObject[] 数组。
  • LinkedList:双向链表(JDK1.6 之前为循环链表,JDK1.7 取消了循环)。详细可以查看:LinkedList 源码分析
Set
  • HashSet(无序,唯一): 基于 HashMap 实现的,底层采用 HashMap 来保存元素。
  • LinkedHashSet: LinkedHashSetHashSet 的子类,并且其内部是通过 LinkedHashMap 来实现的。
  • TreeSet(有序,唯一): 红黑树(自平衡的排序二叉树)。
Queue

再来看看 Map 接口下面的集合。

Map
  • HashMap:JDK1.8 之前 HashMap 由数组+链表组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。JDK1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。详细可以查看:HashMap 源码分析
  • LinkedHashMapLinkedHashMap 继承自 HashMap,所以它的底层仍然是基于拉链式散列结构即由数组和链表或红黑树组成。另外,LinkedHashMap 在上面结构的基础上,增加了一条双向链表,使得上面的结构可以保持键值对的插入顺序。同时通过对链表进行相应的操作,实现了访问顺序相关逻辑。详细可以查看:LinkedHashMap 源码分析
  • Hashtable:数组+链表组成的,数组是 Hashtable 的主体,链表则是主要为了解决哈希冲突而存在的。
  • TreeMap:红黑树(自平衡的排序二叉树)。

4.ArrayList

1.ArrayList 和 LinkedList 的区别总结

线程安全性:线程安全:幂等 线程不安全:多线程时会出现脏数据
  • ArrayList:不保证线程安全。
  • LinkedList:不保证线程安全。
底层数据结构
  • ArrayList:底层使用的是可调整大小的数组(Object 数组)。
  • LinkedList:底层使用的是双向链表结构(JDK 1.6 之前为循环链表,JDK 1.7 之后为双向非循环链表)。
插入和删除操作的时间复杂度
  • ArrayList

    • 尾部插入(add(E e)):时间复杂度为 O(1)。
    • 指定位置插入或删除(add(int index, E element) 和 remove(int index)):时间复杂度为 O(n),因为需要移动元素。
  • LinkedList

    • 首尾插入或删除(add(E e)addFirst(E e)addLast(E e)removeFirst()removeLast()):时间复杂度为 O(1)。
    • 指定位置插入或删除(add(int index, E element) 和 remove(int index)):时间复杂度为 O(n),因为需要遍历链表到指定位置。
随机访问支持
  • ArrayList:支持快速随机访问,时间复杂度为 O(1)(因为实现了 RandomAccess 接口)。
  • LinkedList:不支持快速随机访问,时间复杂度为 O(n)。
内存空间占用
  • ArrayList:在列表末尾预留一定的容量空间,空间浪费可能较大。
  • LinkedList:每个元素都需要额外的存储空间来保存前驱和后继指针,因此每个元素占用的内存较多。

总结

  • ArrayList 适用于需要快速随机访问的场景。
  • LinkedList 适用于频繁插入和删除操作的场景。

2.扩容机制

1.利用空参创建的集合,在底层创建一个默认长度为0的数组
2.添加第一个 元素时,底层会创建一个新的长度为10的数组
3.存满时,会扩容1.5倍
4.扩容之后,ArrayList 会将旧数组中的元素复制到新的、更大容量的数组中。

如果ArrayList有10万个元素,过程会很慢,ArrayList用什么api拷的?

ArrayList 使用 System.arraycopy() 进行数组拷贝,

5.HashMap

1.怎么解决哈希冲突

  1. 链地址法(Separate Chaining):

    • 每个桶存储一个链表或其他数据结构(如树、向量)。
    • 当冲突发生时,将新元素插入到链表的末端。
  2. 开放地址法(Open Addressing):

    • 冲突时,按照一定规则查找其他空闲桶。
    • 常见有三种探查策略:
      • 线性探查(Linear Probing):按线性顺序查找空闲桶。
      • 二次探查(Quadratic Probing):按二次函数序列查找空闲桶。
      • 双重哈希(Double Hashing):使用另一个哈希函数来确定探查序列。

2.hashmap的底层原理了解吗

JDK 1.8 之前
  • 底层结构:数组和链表结合使用。
  • 哈希值计算:通过key的hashCode()经过扰动函数处理得到哈希值,然后使用(n - 1) & hash计算存放位置(n是数组长度)。
  • 冲突解决:使用链地址法
    • 位置若有元素,比较它的哈希值和key。
    • 相同则覆盖,不相同则加入链表。
  • 扰动函数优化:通过扰动函数处理hashCode(),优化哈希值分布,减少碰撞。
JDK 1.8 之后
  • 扩展:引入了红黑树来优化链表的长查询时间。
  • 链表转换为红黑树的条件:当链表长度大于8且数组长度不小于64时,链表转换为红黑树。
  • 优先扩容:数组长度小于64时,会优先进行数组扩容,而不是转换为红黑树。
为什么不直接使用数组+红黑树?

节点少的时候,尽管时间复杂度上,红黑树的时间复杂度0(logn)比链表O(n)好一点,但红黑树所占空间比较大,树节点的大小是常规节点的两倍,不显优势从空间和性能的综合考虑,节点数变多时再考虑使用红黑树会更合适。

了解红黑树吗,什么时候变色,什么时候旋转

为了优化二叉平衡树在顺序节点插入时退化成线性结构的问题。1.根节点是黑色,叶子节点是黑色空节点  2.没有连续的红色节点  3.任意节点到其叶子节点有相同数量的黑色节点。    根据这样的特性红黑树根节点的最长路径不会超过最短路径的两倍  
当插入黑色节点(红色节点不会破坏规则的) 删除节点时保持规则主要用到:变色和旋转两种方法 变色:爷爷节点变红,父亲和叔叔节点变黑  我们一般根据具体情况变色和旋转组合使用

什么时候变色:父亲和叔叔都是黑色

什么时候左旋:父亲红色 叔叔黑色

什么时候右旋:叔叔红色 父亲黑色

3.说说put方法

第一步:根据要添加的键的哈希码计算在数组中的位置(索引)。

第二步:检查该位置是否为空(即没有键值对存在)

第三步:如果该位置已经存在其他键值对,检查该位置的第一个键值对的哈希码和键是否与要添加的键值对相同?

第四步:如果第一个键值对的哈希码和键不相同,则需要遍历链表或红黑树来查找是否有相同的键

第五步:检查链表长度是否达到阈值(默认为8)

第六步:检查负载因子是否超过阈值(默认为0.75)

第七步:扩容操作:

  • 创建一个新的两倍大小的数组。
  • 将旧数组中的键值对重新计算哈希码并分配到新数组中的位置。
  • 更新HashMap的数组引用和阈值参数。

4.Hashmap为什么线程不安全,如何保证线程安全

数据丢失和覆盖风险
  • JDK 1.8 后:
    • HashMap中的多个键值对可能分配到同一个桶(bucket),并以链表或红黑树的形式存储。
    • 多线程进行put操作,可能导致数据覆盖与丢失。
示例
  • 线程冲突:
    1. 线程1和线程2同时进行put操作,发生哈希冲突,计算出的插入下标相同。
    2. 线程1完成哈希冲突判断后,挂起。
    3. 线程2完成插入操作。
    4. 线程1恢复,并进行插入操作,覆盖线程2的数据。

如何保证线程安全:使用ConcurrentHashMap

实现线程安全的方式(重要):

  • 在 JDK1.7 的时候,ConcurrentHashMap 对整个桶数组进行了分割分段(Segment,分段锁),每一把锁只锁容器其中一部分数据(下面有示意图),多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。
  • 到了 JDK1.8 的时候,ConcurrentHashMap 已经摒弃了 Segment 的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6 以后 synchronized 锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在 JDK1.8 中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;

5.hashmap 调用get方法一定安全吗?

不是,调用 get 方法有几点需要注意的地方:

  • 空指针异常(NullPointerException):如果你尝试用 null 作为键调用 get 方法,而 HashMap 没有被初始化(即为 null),那么会抛出空指针异常。不过,如果 HashMap 已经初始化,使用 null 作为键是允许的,因为 HashMap 支持 null 键。
  • 线程安全HashMap 本身不是线程安全的。如果在多线程环境中,没有适当的同步措施,同时对 HashMap 进行读写操作可能会导致不可预测的行为。例如,在一个线程中调用 get 方法读取数据,而另一个线程同时修改了结构(如增加或删除元素),可能会导致读取操作得到错误的结果或抛出 ConcurrentModificationException。如果需要在多线程环境中使用类似 HashMap 的数据结构,可以考虑使用 ConcurrentHashMap

6.HashMap一般用什么做Key?为啥String适合做Key呢?

用 string 做 key,因为 String对象是不可变的,一旦创建就不能被修改,这确保了Key的稳定性。如果Key是可变的,可能会导致hashCode和equals方法的不一致,进而影响HashMap的正确性。

7.为什么HashMap要用红黑树而不是平衡二叉树?

  • 平衡二叉树追求的是一种 “完全平衡” 状态:任何结点的左右子树的高度差不会超过 1,优势是树的结点是很平均分配的。这个要求实在是太严了,导致每次进行插入/删除节点的时候,几乎都会破坏平衡树的第二个规则,进而我们都需要通过左旋右旋来进行调整,使之再次成为一颗符合要求的平衡树。
  • 红黑树不追求这种完全平衡状态,而是追求一种 “弱平衡” 状态:整个树最长路径不会超过最短路径的 2 倍。优势是虽然牺牲了一部分查找的性能效率,但是能够换取一部分维持树平衡状态的成本。与平衡树不同的是,红黑树在插入、删除等操作,不会像平衡树那样,频繁着破坏红黑树的规则,所以不需要频繁着调整,这也是我们为什么大多数情况下使用红黑树的原因。并且红黑树可以进行高效的二分查找,

8.说说hashmap的负载因子

HashMap 负载因子 loadFactor 的默认值是 0.75,当 HashMap 中的元素个数超过了容量的 75% 时,就会进行扩容。哈希表的容量(capacity)指的是底层数组的长度

默认负载因子为 0.75,是因为它提供了空间和时间复杂度之间的良好平衡。

负载因子太低会导致大量的空桶浪费空间,负载因子太高会导致大量的碰撞,降低性能。0.75 的负载因子在这两个因素之间取得了良好的平衡。

9.HashMap的扩容机制介绍一下

hashMap默认的负载因子是0.75,即如果hashmap中的元素个数超过了总容量75%,则会触发扩容,扩容分为两个步骤:

  • 第1步是对哈希表长度的扩展(2倍)
  • 第2步是将旧哈希表中的数据放到新的哈希表中。

10.HashMap的大小为什么是2的n次方大小呢?

取模运算是计算索引位置的关键步骤,如果容量是 2 的幂次方,那么取模操作可以用位运算来代替,提升运算速度

通过resize方法可以看出来扩容时会新建一个tab,然后遍历旧的tab,将旧的元素进行e.hash & (newCap - 1)的计算添加进新的tab中,也就是(n - 1) & hash的计算方法,其中n是集合的容量,hash是添加的元素经过hash函数计算出来的hash值。

之所以这样2n扩容和上面的两个方法有极大的关系,首先他们都使用了按位与运算,按位与运算就是把值先变成二进制然后进行运算,如果有0则为0,都为1时则输出为1,HashMap默认容量为16那么在存放到数组时就是n-1也就是15,而15二进制则是1111扩容后为32-1及11111111

,如果都为1的情况下是可以极大的减少hash碰撞,增加效率的。

总结:

  • 优化取模运算& (capacity - 1) 代替 %,提高性能。
  • 保证哈希分布均匀,减少哈希冲突。
  • 扩容时索引分布有规律,只需简单计算 index + 旧容量,减少重新哈希的计算成本。

11.ConcurrentHashMap怎么实现的?

JDK 1.7 ConcurrentHashMap

在 JDK 1.7 中它使用的是数组加链表的形式实现的,而数组又分为:大数组 Segment 和小数组 HashEntry。 Segment 是一种可重入锁(ReentrantLock),在 ConcurrentHashMap 里扮演锁的角色(ConcurrentHashMap 的实现中,每个 Segment 扮演了维护自己部分数据的角色,同时也继承了 ReentrantLock,这为它提供了锁机制的能力。Segment 继承了 ReentrantLock,这意味着它不仅是一个管理一部分哈希表数据结构的单元,还是一个可重入锁。);HashEntry 则用于存储键值对数据。一个 ConcurrentHashMap 里包含一个 Segment 数组,一个 Segment 里包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素。

JDK 1.7 ConcurrentHashMap 分段锁技术将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。

JDK 1.8 ConcurrentHashMap

在 JDK 1.7 中,ConcurrentHashMap 虽然是线程安全的,但因为它的底层实现是数组 + 链表的形式,所以在数据比较多的情况下访问是很慢的,因为要遍历整个链表,而 JDK 1.8 则使用了数组 + 链表/红黑树的方式优化了 ConcurrentHashMap 的实现,具体实现结构如下:

JDK 1.8 ConcurrentHashMap JDK 1.8 ConcurrentHashMap 主要通过 volatile + CAS 或者 synchronized 来实现的线程安全的。添加元素时首先会判断容器是否为空:

  • 如果为空则使用 volatile 加 CAS 来初始化
  • 如果容器不为空,则根据存储的元素计算该位置是否为空。
    • 如果根据存储的元素计算结果为空,则利用 CAS 设置该节点;
    • 如果根据存储的元素计算结果不为空,则使用 synchronized ,然后,遍历桶中的数据,并替换或新增节点到桶中,最后再判断是否需要转为红黑树,这样就能保证并发访问时的线程安全了。

如果把上面的执行用一句话归纳的话,就相当于是ConcurrentHashMap通过对头结点加锁来保证线程安全的,锁的粒度相比 Segment 来说更小了,发生冲突和加锁的频率降低了,并发操作的性能就提高了。

11.1分段锁怎么加锁的?

在 ConcurrentHashMap 中,将整个数据结构分为多个 Segment,每个 Segment 都类似于一个小的 HashMap,每个 Segment 都有自己的锁,不同 Segment 之间的操作互不影响,从而提高并发性能。

在 ConcurrentHashMap 中,对于插入、更新、删除等操作,需要先定位到具体的 Segment,然后再在该 Segment 上加锁,而不是像传统的 HashMap 一样对整个数据结构加锁。这样可以使得不同 Segment 之间的操作并行进行,提高了并发性能。

11.2分段锁是可重入的吗?

JDK 1.7 ConcurrentHashMap中的分段锁是用了 ReentrantLock,是一个可重入的锁。

11.3已经用了synchronized,为什么还要用CAS呢?

ConcurrentHashMap使用这两种手段来保证线程安全主要是一种权衡的考虑,在某些操作中使用synchronized,还是使用CAS,主要是根据锁竞争程度来判断的。

比如:在putVal中,如果计算出来的hash槽没有存放元素,那么就可以直接使用CAS来进行设置值,这是因为在设置元素的时候,因为hash值经过了各种扰动后,造成hash碰撞的几率较低,那么我们可以预测使用较少的自旋来完成具体的hash落槽操作。

当发生了hash碰撞的时候说明容量不够用了或者已经有大量线程访问了,因此这时候使用synchronized来处理hash碰撞比CAS效率要高,因为发生了hash碰撞大概率来说是线程竞争比较强烈。

11.4ConcurrentHashMap用了悲观锁还是乐观锁?

悲观锁和乐观锁都有用到。

添加元素时首先会判断容器是否为空:

  • 如果为空则使用 volatile 加 CAS (乐观锁) 来初始化。

  • 如果容器不为空,则根据存储的元素计算该位置是否为空。

  • 如果根据存储的元素计算结果为空,则利用 CAS(乐观锁) 设置该节点;

  • 如果根据存储的元素计算结果不为空,则使用 synchronized(悲观锁) ,然后,遍历桶中的数据,并替换或新增节点到桶中,最后再判断是否需要转为红黑树,这样就能保证并发访问时的线程安全了。

12. HashTable 底层实现原理是什么?

  • Hashtable的底层数据结构主要是数组加上链表,数组是主体,链表是解决hash冲突存在的。
  • HashTable是线程安全的,实现方式是Hashtable的所有公共方法均采用synchronized关键字,当一个线程访问同步方法,另一个线程也访问的时候,就会陷入阻塞或者轮询的状态。

13.hashtable 和concurrentHashMap有什么区别

底层数据结构:

  • jdk7之前的ConcurrentHashMap底层采用的是分段的数组+链表实现,jdk8之后采用的是数组+链表/红黑树;
  • HashTable采用的是数组+链表,数组是主体,链表是解决hash冲突存在的。

实现线程安全的方式:

  • jdk8以前,ConcurrentHashMap采用分段锁,对整个数组进行了分段分割,每一把锁只锁容器里的一部分数据,多线程访问不同数据段里的数据,就不会存在锁竞争,提高了并发访问;jdk8以后,直接采用数组+链表/红黑树,并发控制使用CAS和synchronized操作,更加提高了速度。
  • HashTable:所有的方法都加了锁来保证线程安全,但是效率非常的低下,当一个线程访问同步方法,另一个线程也访问的时候,就会陷入阻塞或者轮询的状态。

Set

#Set集合有什么特点?如何实现key无重复的?

  • set集合特点:Set集合中的元素是唯一的,不会出现重复的元素。
  • set实现原理:Set集合通过内部的数据结构(如哈希表、红黑树等)来实现key的无重复。当向Set集合中插入元素时,会先根据元素的hashCode值来确定元素的存储位置,然后再通过equals方法来判断是否已经存在相同的元素,如果存在则不会再次插入,保证了元素的唯一性。

#有序的Set是什么?记录插入顺序的集合是什么?

  • 有序的 Set 是TreeSet和LinkedHashSet。TreeSet是基于红黑树实现,保证元素的自然顺序。LinkedHashSet是基于双重链表和哈希表的结合来实现元素的有序存储,保证元素添加的自然顺序
  • 记录插入顺序的集合通常指的是LinkedHashSet,它不仅保证元素的唯一性,还可以保持元素的插入顺序。当需要在Set集合中记录元素的插入顺序时,可以选择使用LinkedHashSet来实现。

6.java序列化

  • 序列化:将数据结构或对象转换成可以存储或传输的形式,通常是二进制字节流,也可以是 JSON, XML 等文本格式
  • 反序列化:将在序列化过程中所生成的数据转换为原始数据结构或者对象的过程

OSI 七层协议模型中,表示层做的事情主要就是对应用层的用户数据进行处理转换为二进制流。反过来的话,就是将二进制流转换成应用层的用户数据。这不就对应的是序列化和反序列化么?

因为,OSI 七层协议模型中的应用层、表示层和会话层对应的都是 TCP/IP 四层模型中的应用层,所以序列化协议属于 TCP/IP 协议应用层的一部分。

对于不想进行序列化的变量,使用 transient 关键字修饰。

transient 关键字的作用是:阻止实例中那些用此关键字修饰的的变量序列化;当对象被反序列化时,被 transient 修饰的变量值不会被持久化和恢复。

之前在写项目的时候在没有序列化的情况下也可以在Java项目中传输数据,这种情况可能是因为你使用了其他的数据传输机制,例如通过网络协议(HTTP、TCP等)直接传输数据、使用框架(如Spring)抽象了序列化过程等。这些机制内部可能已经进行了必要的序列化和反序列化操作,只是对你隐藏了细节。

7.Java中的线程安全的集合是什么?

在 java.util 包中的线程安全的类主要 2 个,其他都是非线程安全的。

  • Vector:线程安全的动态数组,其内部方法基本都经过synchronized修饰,如果不需要线程安全,并不建议选择,毕竟同步是有额外开销的。Vector 内部是使用对象数组来保存数据,可以根据需要自动的增加容量,当数组已满时,会创建新的数组,并拷贝原有数组数据。
  • Hashtable:线程安全的哈希表,HashTable 的加锁方法是给每个方法加上 synchronized 关键字,这样锁住的是整个 Table 对象,不支持 null 键和值,由于同步导致的性能开销,所以已经很少被推荐使用,如果要保证线程安全的哈希表,可以用ConcurrentHashMap。

8.为什么ArrayList不是线程安全的,具体来说是哪里不安全?

在高并发添加数据下,ArrayList会暴露三个问题;

  • 部分值为null(我们并没有add null进去)
  • 索引越界异常
  • size与我们add的数量不符

下面我们来分析三种情况都是如何产生的:

  • 部分值为null:当线程1走到了扩容那里发现当前size是9,而数组容量是10,所以不用扩容,这时候cpu让出执行权,线程2也进来了,发现size是9,而数组容量是10,所以不用扩容,这时候线程1继续执行,将数组下标索引为9的位置set值了,还没有来得及执行size++,这时候线程2也来执行了,又把数组下标索引为9的位置set了一遍,这时候两个先后进行size++,导致下标索引10的地方就为null了。
  • 索引越界异常:线程1走到扩容那里发现当前size是9,数组容量是10不用扩容,cpu让出执行权,线程2也发现不用扩容,这时候数组的容量就是10,而线程1 set完之后size++,这时候线程2再进来size就是10,数组的大小只有10,而你要设置下标索引为10的就会越界(数组的下标索引从0开始);
  • size与我们add的数量不符:这个基本上每次都会发生,这个理解起来也很简单,因为size++本身就不是原子操作,可以分为三步:获取size的值,将size的值加1,将新的size值覆盖掉原来的,线程1和线程2拿到一样的size值加完了同时覆盖,就会导致一次没有加上,所以肯定不会与我们add的数量保持一致的;

9.把ArrayList变成线程安全有哪些方法?

线程不安全指的还是高并发情况下出现的问题

ArrayList变成线程安全的方式有:

  • 使用Collections类的synchronizedList方法将ArrayList包装成线程安全的List:
List<String> synchronizedList = Collections.synchronizedList(arrayList);
  • 使用CopyOnWriteArrayList类代替ArrayList,它是一个线程安全的List实现:使用volatile关键字修饰数组,在写入操作时,加了一把互斥锁ReentrantLock以保证线程安全。
CopyOnWriteArrayList<String> copyOnWriteArrayList = new CopyOnWriteArrayList<>(arrayList);
  • 使用Vector类代替ArrayList,Vector是线程安全的List实现:
Vector<String> vector = new Vector<>(arrayList);

五.MYSQL

1.索引

1什么是索引

索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。

索引的作用就相当于书的目录。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。

在执行查询操作时(比如where,排序等等),MySQL 优化器会自动评估是否应该使用索引以及使用哪个索引来优化查询性能。

图示简化

无索引查询

Employees Table
------------------------
| EmployeeID | LastName | FirstName | ...
------------------------
| 1          | Smith    | John      | ...
| 2          | Doe      | Jane      | ...
| 3          | Brown    | Mike      | ...
| ...                            (可能成千上万行)
------------------------
查询: WHERE LastName = 'Smith'

步骤:
1. 从第一行开始扫描,检查LastName。
2. 直到找到所有姓Smith的行。

有索引查询

Employees Table                           Index: idx_LastName
------------------------                   -----------------------
| EmployeeID | LastName | ... |           | LastName | Pointer    |
------------------------                   -----------------------
| 1          | Smith    | ... |           | Brown    | Pointer_to_Row3 |
| 2          | Doe      | ... |           | Doe      | Pointer_to_Row2  |
| 3          | Brown    | ... |           | Smith    | Pointer_to_Row1 |
| ...                            (成千上万行)         ...          | ...
------------------------                   -----------------------
查询: WHERE LastName = 'Smith'

步骤:
1. 索引树定位 'Smith'
2. 直接访问Pointer所指向的行
3. 无需扫描无关的行

2.索引的优缺点

优点

  • 使用索引可以大大加快数据的检索速度(大大减少检索的数据量), 减少 IO 次数,这也是创建索引的最主要的原因。
  • 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

缺点

  • 创建索引和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率。
  • 索引需要使用物理文件存储,也会耗费一定空间。

3.索引底层数据结构选型

1.hash表

2.二叉查找树

3.AVL

4.红黑树

5.B树/B+树

MySOL的默认存储引擎InnoDB主要采用的是B+树的数据结构来存储索
引。选择B+树的原因主要有三个:一是它的阶数更多,路径更短,这样查找效率就更高;二是B+树的磁盘读写代价更低,非叶子节点只存储指针,叶子节点才存储数据;三是B+树的叶子节点
形成了一个双向链表,这样便于扫库和进行区间查询。

4.B树和B+树的区别是什么呢?

B树和B+树确实有一些不同。首先,B树的非叶子节点和叶子节点都会存放数据,而B+树的所有数据都只出现在叶子节点,这使得B+树在查询时效率更稳定。其次,在进行范围查询时,B+树更加高效,因为它的叶子节点形成了一个双向链表。

5.索引类型总结

按照数据结构维度划分:

  • BTree 索引:MySQL 里默认和最常用的索引类型。只有叶子节点存储 value,非叶子节点只有指针和 key。存储引擎 MyISAM 和 InnoDB 实现 BTree 索引都是使用 B+Tree,但二者实现方式不一样(前面已经介绍了)。
  • 哈希索引:类似键值对的形式,一次即可定位。
  • RTree 索引:一般不会使用,仅支持 geometry 数据类型,优势在于范围查找,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHARVARCHAR ,TEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

按照底层存储方式角度划分:

  • 聚簇索引(聚集索引):索引结构和数据一起存放的索引,InnoDB 中的主键索引就属于聚簇索引。
  • 非聚簇索引(非聚集索引):索引结构和数据分开存放的索引,二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。

按照应用维度划分:

  • 主键索引:加速查询 + 列值唯一(不可以有 NULL)+ 表中只有一个。
  • 普通索引:仅加速查询。
  • 唯一索引:加速查询 + 列值唯一(可以有 NULL)。
  • 覆盖索引:一个索引包含(或者说覆盖)所有需要查询的字段的值。
  • 联合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHARVARCHAR ,TEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

6.什么是聚簇索引,什么是非聚簇索引

找到了索引就找到了需要的数据,那么这个索引就是聚簇索引,所以主键就是聚簇索引,修改聚簇索引其实就是修改主键。

索引的存储和数据的存储是分离的,也就是说找到了索引但没找到数据,需要根据索引上的值(主键)再次回表查询,非聚簇索引也叫做辅助索引。

7.知道什么是回表查询嘛

回表查询跟刚才提到的聚簇索引和非聚簇索引有关。当我们通过非聚簇索引找到主键值后,还需要再通过主键值去聚簇索引中找到对应的整行数据,这个过程就是回表。所以,回表查询可能会增加查询的复杂度和时间。

8.非聚簇索引一定会回表查询吗?

非聚簇索引不一定回表查询。

非聚簇索引不一定回表查询。

试想一种情况,用户准备使用 SQL 查询用户名,而用户名字段正好建立了索引。

 SELECT name FROM table WHERE name='guang19';

那么这个索引的 key 本身就是 name,查到对应的 name 直接返回就行了,无需回表查询。

就是查询的信息就是这个索引对应的主键,这也就是覆盖索引

9.联合索引是什么

使用表中的多个字段创建索引,就是 联合索引,也叫 组合索引 或 复合索引

们这里以 score 和 name 两个字段建立联合索引:

ALTER TABLE `cus_order` ADD INDEX id_score_name(score, name);

覆盖索引(Covering Index)是指一个索引包含了查询所需要的所有列,因此查询可以直接从索引中获取数据,而不需要回表(即不需要访问数据表本身)。所以覆盖索引是一种特殊的联合索引,要满足某种特殊情况

10.什么情况下索引会失效?

索引失效的情况确实不少。比如,没有遵循最左匹配法则、模糊查询时%号在前面、在索引字段上进行运算或类型转换等都可能导致索引失效。此外,如果使用了复合索引但中间使用了范围查询,那么右边的条件索引也可能失效。在 WHERE 子句中,如果在 OR 前的条件列是索引列,而在 OR 后的条件列不是索引列,那么索引会失效。

11.讲一讲MySQL的最左前缀原则

最左前缀匹配原则指的是在使用联合索引时,MySQL 会根据索引中的字段顺序,从左到右依次匹配查询条件中的字段。如果查询条件与索引中的最左侧字段相匹配,那么 MySQL 就会使用索引来过滤数据,这样可以提高查询效率。

假设有一个联合索引(column1, column2, column3),其从左到右的所有前缀为(column1)(column1, column2)(column1, column2, column3)(创建 1 个联合索引相当于创建了 3 个索引),包含这些列的所有查询都会走索引而不会全表扫描。

12.索引下推了解过吗?什么是索引下推

假设我们有一个名为 user 的表,其中包含 idusernamezipcode和 birthdate 4 个字段,创建了联合索引(zipcode, birthdate)

CREATE TABLE `user` (
  `id` int NOT NULL AUTO_INCREMENT,
  `username` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL,
  `zipcode` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL,
  `birthdate` date NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_username_birthdate` (`zipcode`,`birthdate`) ) ENGINE=InnoDB AUTO_INCREMENT=1001 DEFAULT CHARSET=utf8mb4;

# 查询 zipcode 为 431200 且生日在 3 月的用户
# birthdate 字段使用函数索引失效
SELECT * FROM user WHERE zipcode = '431200' AND MONTH(birthdate) = 3;
  • 没有索引下推之前,即使 zipcode 字段利用索引可以帮助我们快速定位到 zipcode = '431200' 的用户,但我们仍然需要对每一个找到的用户进行回表操作,获取完整的用户数据,再去判断 MONTH(birthdate) = 3
  • 有了索引下推之后,存储引擎会在使用zipcode 字段索引查找zipcode = '431200' 的用户时,同时判断MONTH(birthdate) = 3。这样,只有同时满足条件的记录才会被返回,减少了回表次数。

13.表中十个字段,你主键用自增ID还是UUID,为什么?

用的是自增 id。

当使用InnoDB存储引擎时,InnoDB会自动将主键作为聚簇索引(Clustered Index),这意味着表数据将按照主键的顺序物理存储。

因为 uuid 相对顺序的自增 id 来说是毫无规律可言的,新行的值不一定要比之前的主键的值要大,所以 innodb 无法做到总是把新行插入到索引的最后,而是需要为新行寻找新的合适的位置从而来分配新的空间。

这个过程需要做很多额外的操作,数据的毫无顺序会导致数据分布散乱,将会导致以下的问题:

  • 写入的目标页很可能已经刷新到磁盘上并且从缓存上移除,或者还没有被加载到缓存中,innodb 在插入之前不得不先找到并从磁盘读取目标页到内存中,这将导致大量的随机 IO。
  • 因为写入是乱序的,innodb 不得不频繁的做页分裂操作,以便为新的行分配空间,页分裂导致移动大量的数据,影响性能。
  • 由于频繁的页分裂,页会变得稀疏并被不规则的填充,最终会导致数据会有碎片。

结论:使用 InnoDB 应该尽可能的按主键的自增顺序插入,并且尽可能使用单调的增加的聚簇键的值来插入新行。

自增ID: 声明类型后面加AUTO_INCREMENT 

CREATE TABLE users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    username VARCHAR(50),
    email VARCHAR(100)
);

UUID:生成值用UUID()函数

CREATE TABLE users (
    id CHAR(36) PRIMARY KEY,
    username VARCHAR(50),
    email VARCHAR(100)
);

-- 使用数据库函数生成UUID
INSERT INTO users (id, username, email) VALUES (UUID(), 'john_doe', 'john@example.com');

14.数据页

数据页包括七个部分

           

 在 File Header 中有两个指针,分别指向上一个数据页和下一个数据页,连接起来的页相当于一个双向的链表,如下图所示:

采用链表的结构是让数据页之间不需要是物理上的连续的,而是逻辑上的 连续

InnoDB 里的 B+ 树中的每个节点都是一个数据页结构示意图如下:

通过上图,我们看出 B+ 树的特点:

  • 只有叶子节点(最底层的节点)才存放了数据,非叶子节点(其他上层节)仅用来存放目录项作为索引。
  • 非叶子节点分为不同层次,通过分层来降低每一层的搜索量;
  • 所有节点按照索引键大小排序,构成一个双向链表,便于范围查询;

15.雪花id作为主键

雪花ID(Snowflake ID)是Twitter开源的分布式ID生成算法,它生成的是一个64位的Long类型的ID,具有全局唯一和有序递增的特点。这个算法的核心在于结合了时间戳、机器标识和序列号三部分来确保生成的ID既唯一又有序。

雪花ID算法结构

雪花ID的结构如下:

  • 最高位是符号位,始终为0,因为生成的ID总是正数。

  • 41位的时间序列,精确到毫秒级,可以使用69年。

  • 10位的机器标识,最多支持部署1024个节点。

  • 12位的计数序列号,支持每个节点每毫秒产生4096个ID序号。

雪花和自增id相比优点:

特性自增ID (AUTO_INCREMENT)雪花ID (Snowflake)
生成复杂度简单复杂
唯一性保障单点生成,可能冲突全球唯一性
安全性可能泄露顺序和数量不易推测,较为安全

 自增ID通常由单一数据库实例或单一数据库表来生成和管理。这意味着所有ID的生成都依赖于这个数据库实例或表。如果负责生成自增ID的数据库实例或表出现故障(如宕机、崩溃或网络问题),那么系统将无法继续生成新的ID,从而影响整个系统的正常运行。

16.索引失效的情况

  • 创建了组合索引,但查询条件未遵守最左匹配原则;
  • 在索引列上进行计算、函数、类型转换等操作;
  • 以 % 开头的 LIKE 查询比如 LIKE '%abc';;
  • 查询条件中使用 OR,且 OR 的前后条件中有一个列没有索引,涉及的索引都不会被使用到;
  • IN 的取值范围较大时会导致索引失效,走全表扫描(NOT IN 和 IN 的失效场景相同);
  • 发生隐式转换

17.什么字段适合当做主键?

  • 字段具有唯一性,且不能为空的特性
  • 字段最好的是有递增的趋势的,如果字段的值是随机无序的,可能会引发页分裂的问题,造型性能影响。
  • 不建议用业务数据作为主键,比如会员卡号、订单号、学生号之类的,因为我们无法预测未来会不会因为业务需要,而出现业务字段重复或者重用的情况。
  • 通常情况下会用自增字段来做主键,对于单机系统来说是没问题的。但是,如果有多台服务器,各自都可以录入数据,那就不一定适用了。因为如果每台机器各自产生的数据需要合并,就可能会出现主键重复的问题,这时候就需要考虑分布式 id 的方案了。

2. SQL 语句在 MySQL 内部是如何执行的(联欢分优质)

从下图你可以很清晰的看到客户端的一条 SQL 语句在 MySQL 内部是如何执行的。

从上图可以看出, MySQL 主要由下面几部分构成:

  • 连接器: 身份认证和权限相关(登录 MySQL 的时候)。
  • 查询缓存: 执行查询语句的时候,会先查询缓存(MySQL 8.0 版本后移除,因为这个功能不太实用)。
  • 分析器: 没有命中缓存的话,SQL 语句就会经过分析器,分析器说白了就是要先看你的 SQL 语句要干嘛,再检查你的 SQL 语句语法是否正确。
  • 优化器: 按照 MySQL 认为最优的方案去执行。
  • 执行器: 执行语句,然后从存储引擎返回数据。 执行语句之前会先判断是否有权限,如果没有权限的话,就会报错。
  • 插件式存储引擎:主要负责数据的存储和读取,采用的是插件式架构,支持 InnoDB、MyISAM、Memory 等多种存储引擎。

3.mysql的基础架构

 MySQL 主要由下面几部分构成:

  • 连接器: 身份认证和权限相关(登录 MySQL 的时候)。
  • 查询缓存: 执行查询语句的时候,会先查询缓存(MySQL 8.0 版本后移除,因为这个功能不太实用)。
  • 分析器: 没有命中缓存的话,SQL 语句就会经过分析器,分析器说白了就是要先看你的 SQL 语句要干嘛,再检查你的 SQL 语句语法是否正确。
  • 优化器: 按照 MySQL 认为最优的方案去执行。
  • 执行器: 执行语句,然后从存储引擎返回数据。 执行语句之前会先判断是否有权限,如果没有权限的话,就会报错。
  • 插件式存储引擎:主要负责数据的存储和读取,采用的是插件式架构,支持 InnoDB、MyISAM、Memory 等多种存储引擎。

4.MySQL 存储引擎架构了解吗

MySQL 支持多种存储引擎,你可以通过 SHOW ENGINES 命令来查看 MySQL 支持的所有存储引擎。

查看 MySQL 提供的所有存储引擎

查看 MySQL 提供的所有存储引擎

从上图我们可以查看出, MySQL 当前默认的存储引擎是 InnoDB。并且,所有的存储引擎中只有 InnoDB 是事务性存储引擎,也就是说只有 InnoDB 支持事务。

MySQL 存储引擎采用的是 插件式架构 ,支持多种存储引擎,我们甚至可以为不同的数据库表设置不同的存储引擎以适应不同场景的需要。存储引擎是基于表的,而不是数据库。

5.MyISAM 和 InnoDB 有什么区别?

  • InnoDB 支持行级别的锁粒度,MyISAM 不支持,只支持表级别的锁粒度。
  • MyISAM 不提供事务支持。InnoDB 提供事务支持,实现了 SQL 标准定义了四个隔离级别。
  • MyISAM 不支持外键,而 InnoDB 支持。
  • MyISAM 不支持 MVCC,而 InnoDB 支持。
  • 虽然 MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是两者的实现方式不太一样。
  • MyISAM 不支持数据库异常崩溃后的安全恢复,而 InnoDB 支持。
  • InnoDB 的性能比 MyISAM 更强大。

下面是解析:回答上面的就行

1、是否支持行级锁

MyISAM 只有表级锁(table-level locking),而 InnoDB 支持行级锁(row-level locking)和表级锁,默认为行级锁。

也就说,MyISAM 一锁就是锁住了整张表,这在并发写的情况下是多么滴憨憨啊!这也是为什么 InnoDB 在并发写的时候,性能更牛皮了!

2、是否支持事务

MyISAM 不提供事务支持。

InnoDB 提供事务支持,实现了 SQL 标准定义了四个隔离级别,具有提交(commit)和回滚(rollback)事务的能力。并且,InnoDB 默认使用的 REPEATABLE-READ(可重读)隔离级别是可以解决幻读问题发生的(基于 MVCC 和 Next-Key Lock)。

关于 MySQL 事务的详细介绍,可以看看我写的这篇文章:MySQL 事务隔离级别详解

3、是否支持外键

MyISAM 不支持,而 InnoDB 支持。

外键对于维护数据一致性非常有帮助,但是对性能有一定的损耗。因此,通常情况下,我们是不建议在实际生产项目中使用外键的,在业务代码中进行约束即可!

阿里的《Java 开发手册》也是明确规定禁止使用外键的。

不过,在代码中进行约束的话,对程序员的能力要求更高,具体是否要采用外键还是要根据你的项目实际情况而定。

总结:一般我们也是不建议在数据库层面使用外键的,应用层面可以解决。不过,这样会对数据的一致性造成威胁。具体要不要使用外键还是要根据你的项目来决定。

4、是否支持数据库异常崩溃后的安全恢复

MyISAM 不支持,而 InnoDB 支持。

使用 InnoDB 的数据库在异常崩溃后,数据库重新启动的时候会保证数据库恢复到崩溃前的状态。这个恢复的过程依赖于 redo log 。

5、是否支持 MVCC

MyISAM 不支持,而 InnoDB 支持。

讲真,这个对比有点废话,毕竟 MyISAM 连行级锁都不支持。MVCC 可以看作是行级锁的一个升级,可以有效减少加锁操作,提高性能。

6、索引实现不一样。

虽然 MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是两者的实现方式不太一样。

InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。

详细区别,推荐你看看我写的这篇文章:MySQL 索引详解

7、性能有差别。

InnoDB 的性能比 MyISAM 更强大,不管是在读写混合模式下还是只读模式下,随着 CPU 核数的增加,InnoDB 的读写能力呈线性增长。MyISAM 因为读写不能并发,它的处理能力跟核数没关系。

InnoDB 和 MyISAM 性能对比

InnoDB 和 MyISAM 性能对比

8、数据缓存策略和机制实现不同。

InnoDB 使用缓冲池(Buffer Pool)缓存数据页和索引页,MyISAM 使用键缓存(Key Cache)仅缓存索引页而不缓存数据页。

6.mysql查询缓存

1.了解mysql查询缓存吗

MySQL 查询缓存是查询结果缓存。执行查询语句的时候,会先查询缓存,如果缓存中有对应的查询结果,就会直接返回。

2.查询缓存不命中的情况:

  • 任何两个查询在任何字符上的不同都会导致缓存不命中。
  • 如果查询中包含任何用户自定义函数、存储函数、用户变量、临时表、MySQL 库中的系统表,其查询结果也不会被缓存。
  • 缓存建立之后,MySQL 的查询缓存系统会跟踪查询中涉及的每张表,如果这些表(数据或结构)发生变化,那么和这张表相关的所有缓存数据都将失效。

3.为什么mysql8.0之后要取消查询缓存

缓存虽然能够提升数据库的查询性能,但是缓存同时也带来了额外的开销,每次查询后都要做一次缓存操作,失效后还要销毁。

7.mysql三大日志

  • undo log(回滚日志):是 Innodb 存储引擎层生成的日志,实现了事务中的原子性,主要用于事务回滚和 MVCC
  • redo log(重做日志):是 Innodb 存储引擎层生成的日志,实现了事务中的持久性,主要用于掉电等故障恢复
  • binlog (归档日志):是 Server 层生成的日志,主要用于数据备份和主从复制

1.为什么需要undo log

  • 实现事务回滚,保障事务的原子性。事务处理过程中,如果出现了错误或者用户执 行了 ROLLBACK 语句,MySQL 可以利用 undo log 中的历史数据将数据恢复到事务开始之前的状态。
  • 实现 MVCC(多版本并发控制)关键因素之一。MVCC 是通过 ReadView + undo log 实现的。undo log 为每条记录保存多份历史数据,MySQL 在执行快照读(普通 select 语句)的时候,会根据事务的 Read View 里的信息,顺着 undo log 的版本链找到满足其可见性的记录。

2. undo log 是如何刷盘(持久化到磁盘)的?

undo log 和数据页的刷盘策略是一样的,都需要通过 redo log 保证持久化。

buffer pool 中有 undo 页,对 undo 页的修改也都会记录到 redo log。redo log 会每秒刷盘,提交事务时也会刷盘,数据页和 undo 页都是靠这个机制保证持久化的。

3.为什么需要buffer pool、

MySQL 的数据都是存在磁盘中的,那么我们要更新一条记录的时候,得先要从磁盘读取该记录,然后在内存中修改这条记录。那修改完这条记录是选择直接写回到磁盘,还是选择缓存起来呢?

当然是缓存起来好,这样下次有查询语句命中了这条记录,直接读取缓存中的记录,就不需要从磁盘获取数据了。

为此,Innodb 存储引擎设计了一个缓冲池(Buffer Pool),来提高数据库的读写性能。

4.buffer pool缓存是什么

InnoDB 会把存储的数据划分为若干个「页」,以页作为磁盘和内存交互的基本单位,一个页的默认大小为 16KB。因此,Buffer Pool 同样需要按「页」来划分。

在 MySQL 启动的时候,InnoDB 会为 Buffer Pool 申请一片连续的内存空间,然后按照默认的16KB的大小划分出一个个的页, Buffer Pool 中的页就叫做缓存页。此时这些缓存页都是空闲的,之后随着程序的运行,才会有磁盘上的页被缓存到 Buffer Pool 中。

5.为什么需要 redo log ?

Buffer Pool 是提高了读写效率没错,但是问题来了,Buffer Pool 是基于内存的,而内存总是不可靠,万一断电重启,还没来得及落盘的脏页数据就会丢失。

为了防止断电导致数据丢失的问题,当有一条记录需要更新的时候,InnoDB 引擎就会先更新内存(同时标记为脏页),然后将本次对这个页的修改以 redo log 的形式记录下来,这个时候更新就算完成了

后续,InnoDB 引擎会在适当的时候,由后台线程将缓存在 Buffer Pool 的脏页刷新到磁盘里,这就是 WAL (Write-Ahead Logging)技术

WAL 技术指的是, MySQL 的写操作并不是立刻写到磁盘上,而是先写日志,然后在合适的时间再写到磁盘上

6.什么是 redo log?

redo log 是物理日志,记录了某个数据页做了什么修改,比如对 XXX 表空间中的 YYY 数据页 ZZZ 偏移量的地方做了AAA 更新,每当执行一个事务就会产生这样的一条或者多条物理日志。

在事务提交时,只要先将 redo log 持久化到磁盘即可,可以不需要等到将缓存在 Buffer Pool 里的脏页数据持久化到磁盘。

7.被修改 Undo 页面,需要记录对应 redo log 吗?

需要的。

开启事务后,InnoDB 层更新记录前,首先要记录相应的 undo log,如果是更新操作,需要把被更新的列的旧值记下来,也就是要生成一条 undo log,undo log 会写入 Buffer Pool 中的 Undo 页面。

8.redo log 和 undo log 区别在哪

这两种日志是属于 InnoDB 存储引擎的日志,它们的区别在于:

  • redo log 记录了此次事务「完成后」的数据状态,记录的是更新之后的值;
  • undo log 记录了此次事务「开始前」的数据状态,记录的是更新之前的值;

事务提交之前发生了崩溃,重启后会通过 undo log 回滚事务,事务提交之后发生了崩溃,重启

9.redo log 什么时候刷盘?

  • MySQL 正常关闭时;
  • 当 redo log buffer 中记录的写入量大于 redo log buffer 内存空间的一半时,会触发落盘;
  • InnoDB 的后台线程每隔 1 秒,将 redo log buffer 持久化到磁盘。
  • 每次事务提交时都将缓存在 redo log buffer 里的 redo log 直接持久化到磁盘(这个策略可由 innodb_flush_log_at_trx_commit 参数控制,下面会说)。

10.redo log 文件写满了怎么办?

如果 write pos 追上了 checkpoint,就意味着 redo log 文件满了,这时 MySQL 不能再执行新的更新操作,也就是说 MySQL 会被阻塞因此所以针对并发量大的系统,适当设置 redo log 的文件大小非常重要),此时会停下来将 Buffer Pool 中的脏页刷新到磁盘中,然后标记 redo log 哪些记录可以被擦除,接着对旧的 redo log 记录进行擦除,等擦除完旧记录腾出了空间,checkpoint 就会往后移动(图中顺时针),然后 MySQL 恢复正常运行,继续执行新的更新操作。

11.redo log 和 binlog 有什么区别?

1redolog是属于innoDB层面,binlog是属于Mysql server层面;
2redolog是物理日志,记录该数据页更新的内容;binlog是逻辑日志,记录的是这个更新
语句的原始逻辑;
3 redolog是循环写,日志空间大小固定binlog是追加写,是指一份写到一定大小的时
候会更换下一个文件,不会覆盖;
4redolog保证了事务的持久性,binlog保证了事务的原子性和一致性。

8.MySQL 事务

1.何谓数据库事务?

数据库事务可以保证多个对数据库的操作(也就是 SQL 语句)构成一个逻辑上的整体。构成这个逻辑上的整体的这些数据库操作遵循:要么全部执行成功,要么全部不执行 。

2.事务的特性

  • 原子性Atomicity):事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
  • 一致性Consistency):执行事务前后,数据保持一致,例如转账业务中,无论事务是否成功,转账者和收款人的总额应该是不变的;
  • 隔离性Isolation):并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
  • 持久性Durability):一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

3.并发事务带来了哪些问题?

  1. 脏读(Dirty Read):一个事务读取了另一个未提交事务的修改数据,而该修改事务却回滚,导致读取的数据无效。
    例子:事务1将数据A修改为19,但未提交,事务2读取到A=19,但事务1回滚,结果A重新变回20。

  2. 丢失修改(Lost Update):两个事务同时读取同一数据并分别修改,导致一个事务的修改被覆盖。 例子:事务1和事务2都读取A=20,事务1将A修改为19,事务2也将A修改为19,事务1的修改被丢失。

  3. 不可重复读(Unrepeatable Read):一个事务内多次读取同一数据,而这期间另一个事务修改了数据,导致两次读取结果不一致。 例子:事务1第一次读取A=20,事务2将A修改为19,事务1再次读取A,结果变为19。

  4. 幻读(Phantom Read):一个事务读取某范围的数据后,另一个事务在该范围内插入新的数据,导致再次读取时结果集发生变化。 例子:事务2读取特定范围的数据,事务1在此范围内插入新数据,事务2再次读取时发现有多出的数据。

并发事务带来四种问题,mysql为了解决设置了事务隔离级别,有四种事务隔离级别,事务隔离是通过锁和MVCC实现,锁有全局锁,表级锁,行级锁

4.不可重复读和幻读有什么区别?

  • 不可重复读的重点是内容修改或者记录减少比如多次读取一条记录发现其中某些记录的值被修改;
  • 幻读的重点在于记录新增比如多次执行同一条查询语句(DQL)时,发现查到的记录增加了。

幻读其实可以看作是不可重复读的一种特殊情况,单独把幻读区分出来的原因主要是解决幻读和不可重复读的方案不一样。

5.并发事务的控制方式有哪些?

MySQL 中并发事务的控制方式主要有两种:锁(Locks)多版本并发控制(MVCC,Multiversion Concurrency Control)

锁(Locks)

锁机制是一种悲观控制策略,通过锁来显式控制共享资源。

  • 共享锁(S 锁/读锁):允许多个事务同时读取同一记录,不互相排斥。
  • 排他锁(X 锁/写锁):只允许一个事务修改记录,其他事务不能对该记录进行读或写操作。

根据锁的粒度,锁又分为表级锁和行级锁:

  • 表级锁:锁住整张表,适用于需要锁定大量记录的操作。
  • 行级锁:锁住某些特定的行,粒度更细,可以提高并发性能。InnoDB 支持行级锁,默认使用行级锁。

多版本并发控制(MVCC)

原理:

MVCC原理:核心是undolog和事务id(递增) 每行数据后面隐藏事务id和undolog指针 undolog存放上个版本的数据 事务执行前生成readview readview记录最早的未提交事务id 读取:之后读取只读取这个id之前的版本 写入:创建新的版本 写入修改的数据和自己的事务ID 读取已提交和可重复读用MVCC 读取未提交不用(直接读)可串行读不用(用锁保证安全) 

MVCC 是一种乐观控制策略,它通过维护数据的多个版本来实现并发控制,每个事务读取的数据版本与其他事务隔离。

MVCC 是一种并发控制机制,用于在多个并发事务同时读写数据库时保持数据的一致性和隔离性。它是通过在每个数据行上维护多个版本的数据来实现的。当一个事务要对数据库中的数据进行修改时,MVCC 会为该事务创建一个数据快照,而不是直接修改实际的数据行。

1、读操作(SELECT):

当一个事务执行读操作时,它会使用快照读取。快照读取是基于事务开始时数据库中的状态创建的,因此事务不会读取其他事务尚未提交的修改。具体工作情况如下:

  • 对于读取操作,事务会查找符合条件的数据行,并选择符合其事务开始时间的数据版本进行读取。
  • 如果某个数据行有多个版本,事务会选择不晚于其开始时间的最新版本,确保事务只读取在它开始之前已经存在的数据。
  • 事务读取的是快照数据,因此其他并发事务对数据行的修改不会影响当前事务的读取操作。

2、写操作(INSERT、UPDATE、DELETE):

当一个事务执行写操作时,它会生成一个新的数据版本,并将修改后的数据写入数据库。具体工作情况如下:

  • 对于写操作,事务会为要修改的数据行创建一个新的版本,并将修改后的数据写入新版本。
  • 新版本的数据会带有当前事务的版本号,以便其他事务能够正确读取相应版本的数据。
  • 原始版本的数据仍然存在,供其他事务使用快照读取,这保证了其他事务不受当前事务的写操作影响。

3、事务提交和回滚:

  • 当一个事务提交时,它所做的修改将成为数据库的最新版本,并且对其他事务可见。
  • 当一个事务回滚时,它所做的修改将被撤销,对其他事务不可见。

4、版本的回收:

为了防止数据库中的版本无限增长,MVCC 会定期进行版本的回收。回收机制会删除已经不再需要的旧版本数据,从而释放空间。

MVCC 通过创建数据的多个版本和使用快照读取来实现并发控制。读操作使用旧版本数据的快照,写操作创建新版本,并确保原始版本仍然可用。这样,不同的事务可以在一定程度上并发执行,而不会相互干扰,从而提高了数据库的并发性能和数据一致性。

主要的实现机制:

  • undo log:记录数据的多个版本,在需要时回滚到之前版本。
  • read view隐藏字段:用于判断当前数据版本的可见性,即事务只能看到符合其隔离级别要求的数据版本。

总结

MySQL 中并发事务的控制方式包括锁和 MVCC:

  1. :通过共享锁和排他锁来控制并发访问,可分为表级锁和行级锁。
  2. MVCC:通过维护多个版本的数据来实现高效的并发控制,主要依赖 undo log 和 read view 等机制。

9.SQL 标准定义了哪些事务隔离级别?

SQL 标准定义了四个隔离级别:

  • READ-UNCOMMITTED(读取未提交) :最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
  • READ-COMMITTED(读取已提交) :允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
  • REPEATABLE-READ(可重复读) :对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。即,如果在事务A中多次读取某行数据,事务B不能在A结束之前修改或删除该行数据。
  • SERIALIZABLE(可串行化) :最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。

10.MySQL 的隔离级别是基于锁实现的吗?

MySQL 的隔离级别基于锁和 MVCC 机制共同实现的。

SERIALIZABLE 隔离级别是通过锁来实现的,READ-COMMITTED 和 REPEATABLE-READ 隔离级别是基于 MVCC 实现的。不过, SERIALIZABLE 之外的其他隔离级别可能也需要用到锁机制,就比如 REPEATABLE-READ 在当前读情况下需要使用加锁读来保证不会出现幻读

11.MySQL 的默认隔离级别是什么?

MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读)。我们可以通过SELECT @@tx_isolation;命令来查看,MySQL 8.0 该命令改为SELECT @@transaction_isolation

默认级别是可重复读可重复读怎么解决幻读?

1.用Next-Key Lock 会锁住 查询范围内的行,以及 这些行之间的间隙,阻止其他事务在该范围内插入新数据。

2.用MVCC,MVCC 通过创建快照(Snapshot)来防止幻读,保证事务期间读取到的都是启动时的版本,即使其他事务插入了新数据,也不会影响当前事务的查询结果。

12.MySQL 锁

MySQL锁、加锁机制(超详细)—— 锁分类、全局锁、共享锁、排他锁;表锁、元数据锁、意向锁;行锁、间隙锁、临键锁;乐观锁、悲观锁-腾讯云开发者社区-腾讯云

给数据库加锁是一种用于管理并发访问的机制,以确保数据的一致性和完整性。在多用户环境中,多个人或程序可能同时访问和修改同一数据集。锁机制通过限制对数据的访问和修改来防止数据竞态条件、脏读、不可重复读和幻读等并发问题。数据库锁可以有不同的粒度和作用范围,表级锁和行级锁是其中的两种常见锁类型。以下是这两种锁的详细解释:

表级锁

  • 定义: 表级锁会锁定整个表,防止其他事务对该表进行并发访问。
  • 优点: 实现相对简单,开销较低。当数据表比较小或者并发访问压力不高时,表级锁可以有效地管理并发。
  • 缺点: 粒度较粗,容易导致锁争用和资源浪费。例如,如果一个事务正在更新表中的几行数据,其他事务需要等待锁释放才能访问该表,导致并发性能下降。
  • 适用场景: 适合简单的查询操作、写操作较少或并发用户较少的场景。

行级锁

  • 定义: 行级锁只会锁定表中的特定行,而不是整个表,允许其他事务并发访问和操作同一个表中的不同行。
  • 优点: 粒度较细,极大地提高了并发访问的效率和灵活性。不容易造成锁争用,高并发场景下性能更好。
  • 缺点: 实现复杂,开销较大。数据库需要维护更多的锁信息,可能导致锁管理的开销增加。
  • 适用场景: 适合大型数据库系统、并发访问频繁或读写操作较多的场景。

从互斥角度:

  1. 共享锁(Shared Lock):

    • 允许多个事务读取数据,但不允许修改。用于确保读取过程中数据不被修改。
  2. 排他锁(Exclusive Lock):

    • 仅允许一个事务访问数据,禁止其他事务读取或写入。用于修改或删除操作。

1.表级锁和行级锁了解吗?有什么区别?

  • 表级锁: MySQL 中锁定粒度最大的一种锁(全局锁除外),是针对非索引字段加的锁,对当前操作的整张表加锁,实现简单,资源消耗也比较少,加锁快,不会出现死锁。不过,触发锁冲突的概率最高,高并发下效率极低。表级锁和存储引擎无关,MyISAM 和 InnoDB 引擎都支持表级锁。
  • 行级锁: MySQL 中锁定粒度最小的一种锁,是 针对索引字段加的锁 ,只针对当前操作的行记录进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。行级锁和存储引擎有关,是在存储引擎层面实现的。

2.行级锁的使用有什么注意事项?

InnoDB 的行锁是针对索引字段加的锁,表级锁是针对非索引字段加的锁。当我们执行 UPDATEDELETE 语句时,如果 WHERE条件中字段没有命中唯一索引或者索引失效的话,就会导致扫描全表对表中的所有行记录进行加锁。这个在我们日常工作开发中经常会遇到,一定要多多注意!!!

3.InnoDB 有哪几类行锁?

  • 记录锁(Record Lock):也被称为记录锁,属于单个行记录上的锁。
  • 间隙锁(Gap Lock):锁定一个范围,不包括记录本身。
  • 临键锁(Next-Key Lock):Record Lock+Gap Lock,锁定一个范围,包含记录本身,主要目的是为了解决幻读问题(MySQL 事务部分提到过)。记录锁只能锁住已经存在的记录,为了避免插入新记录,需要依赖间隙锁。

Record Lock

Record Lock 称为记录锁,锁住的是一条记录(就是锁住一行)。而且记录锁是有 S 锁和 X 锁之分的:

  • 当一个事务对一条记录加了 S 型记录锁后,其他事务也可以继续对该记录加 S 型记录锁(S 型与 S 锁兼容),但是不可以对该记录加 X 型记录锁(S 型与 X 锁不兼容);
  • 当一个事务对一条记录加了 X 型记录锁后,其他事务既不可以对该记录加 S 型记录锁(S 型与 X 锁不兼容),也不可以对该记录加 X 型记录锁(X 型与 X 锁不兼容)。

举个例子,当一个事务执行了下面这条语句:

mysql > begin;
mysql > select * from t_test where id = 1 for update;

事务会对表中主键 id = 1 的这条记录加上 X 型的记录锁,如果这时候其他事务对这条记录进行删除或者更新操作,那么这些操作都会被阻塞。注意,其他事务插入一条 id = 1 的新记录并不会被阻塞,而是会报主键冲突的错误,这是因为主键有唯一性的约束。

img

当事务执行 commit 后,事务过程中生成的锁都会被释放。

Gap Lock

Gap Lock 称为间隙锁,只存在于可重复读隔离级别,目的是为了解决可重复读隔离级别下幻读的现象。

假设,表中有一个范围 id 为(3,5)间隙锁,那么其他事务就无法插入 id = 4 这条记录了,这样就有效的防止幻读现象的发生。

img

间隙锁虽然存在 X 型间隙锁和 S 型间隙锁,但是并没有什么区别,间隙锁之间是兼容的,即两个事务可以同时持有包含共同间隙范围的间隙锁,并不存在互斥关系,因为间隙锁的目的是防止插入幻影记录而提出的

Next-Key Lock

Next-Key Lock 称为临键锁,是 Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。

假设,表中有一个范围 id 为(3,5] 的 next-key lock,那么其他事务即不能插入 id = 4 记录,也不能修改和删除 id = 5 这条记录。

img

所以,next-key lock 即能保护该记录,又能阻止其他事务将新记录插入到被保护记录前面的间隙中。

next-key lock 是包含间隙锁+记录锁的,如果一个事务获取了 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,是会被阻塞的

比如,一个事务持有了范围为 (1, 10] 的 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,就会被阻塞。

虽然相同范围的间隙锁是多个事务相互兼容的,但对于记录锁,我们是要考虑 X 型与 S 型关系,X 型的记录锁与 X 型的记录锁是冲突的。

5.共享锁和排他锁呢?

不论是表级锁还是行级锁,都存在共享锁(Share Lock,S 锁)和排他锁(Exclusive Lock,X 锁)这两类:

  • 共享锁(S 锁):又称读锁,事务在读取记录的时候获取共享锁,允许多个事务同时获取(锁兼容)。
  • 排他锁(X 锁):又称写锁/独占锁,事务在修改记录的时候获取排他锁,不允许多个事务同时获取。如果一个记录已经被加了排他锁,那其他事务不能再对这条事务加任何类型的锁(锁不兼容)。

排他锁与任何的锁都不兼容,共享锁仅和共享锁兼容。

S 锁X 锁
S 锁不冲突冲突
X 锁冲突冲突

6.意向锁有什么作用?

意向锁是表级锁,共有两种:

  • 意向共享锁(Intention Shared Lock,IS 锁):事务有意向对表中的某些记录加共享锁(S 锁),加共享锁前必须先取得该表的 IS 锁。
  • 意向排他锁(Intention Exclusive Lock,IX 锁):事务有意向对表中的某些记录加排他锁(X 锁),加排他锁之前必须先取得该表的 IX 锁。

意向锁是由数据引擎自己维护的,用户无法手动操作意向锁,在为数据行加共享/排他锁之前,InnoDB 会先获取该数据行所在在数据表的对应意向锁。

意向锁之间是互相兼容的。

IS 锁IX 锁
IS 锁兼容兼容
IX 锁兼容兼容

意向锁和共享锁和排它锁互斥(这里指的是表级别的共享锁和排他锁,意向锁不会与行级的共享锁和排他锁互斥)。

IS 锁IX 锁
S 锁兼容互斥
X 锁互斥互斥

7.当前读和快照读有什么区别?

快照读(一致性非锁定读)就是单纯的 SELECT 语句

当前读 (一致性锁定读)就是给行记录加 X 锁或 S 锁。

8.MySQL死锁

  • 共享锁(Shared Lock,S锁):允许其他事务读取,但不允许修改。

START TRANSACTION;
SELECT * FROM table_name WHERE id = 1 LOCK IN SHARE MODE;

  • 排他锁(Exclusive Lock,X锁):不允许其他事务读取和修改。

START TRANSACTION;
SELECT * FROM table_name WHERE id = 1 FOR UPDATE;

1.死锁的例子:

好的,以下是一个造成死锁的典型例子。假设我们有一个 accounts 表,结构如下:

CREATE TABLE accounts (
    id INT PRIMARY KEY,
    balance DECIMAL(10, 2)
);

表中有以下数据:

 
INSERT INTO accounts (id, balance) VALUES (1, 100.00);
INSERT INTO accounts (id, balance) VALUES (2, 200.00);

现在我们有两个事务 Transaction A 和 Transaction B,它们交替对这两行数据进行操作,从而造成死锁。

事务A:

START TRANSACTION;
-- 锁定id = 1的行
UPDATE accounts SET balance = balance - 50 WHERE id = 1;
-- 由于事务B已经锁定了id = 2的行,此操作将会等待
UPDATE accounts SET balance = balance + 50 WHERE id = 2;

事务B:

START TRANSACTION;
-- 锁定id = 2的行
UPDATE accounts SET balance = balance - 50 WHERE id = 2;
-- 由于事务A已经锁定了id = 1的行,此操作将会等待
UPDATE accounts SET balance = balance + 50 WHERE id = 1;
2.死锁的形成

以下是事务的执行过程,导致死锁:

  1. 事务A 开始并执行首个语句,锁定了 id = 1 这一行。
  2. 事务B 开始并执行首个语句,锁定了 id = 2 这一行。
  3. 事务A 执行第二个语句,尝试锁定 id = 2 这一行,但此时被 事务B 锁定,因此 事务A 进入等待状态。
  4. 事务B 执行第二个语句,尝试锁定 id = 1 这一行,但此时被 事务A 锁定,所以 事务B 也进入等待状态。

此时,两个事务都在等待对方释放锁,从而形成死锁。

3.如何避免死锁?

死锁的四个必要条件:互斥、占有且等待、不可强占用、循环等待。只要系统发生死锁,这些条件必然成立,但是只要破坏任意一个条件就死锁就不会成立。

在数据库层面,有两种策略通过「打破循环等待条件」来解除死锁状态:

  • 设置事务等待锁的超时时间。当一个事务的等待时间超过该值后,就对这个事务进行回滚,于是锁就释放了,另一个事务就可以继续执行了。在 InnoDB 中,参数 innodb_lock_wait_timeout 是用来设置超时时间的,默认值时 50 秒。

    当发生超时后,就出现下面这个提示:

图片

  • 开启主动死锁检测。主动死锁检测在发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑,默认就开启。

    当检测到死锁后,就会出现下面这个提示:

图片

上面这个两种策略是「当有死锁发生时」的避免方式。

我们可以回归业务的角度来预防死锁,对订单做幂等性校验的目的是为了保证不会出现重复的订单,那我们可以直接将 order_no 字段设置为唯一索引列,利用它的唯一性来保证订单表不会出现重复的订单,不过有一点不好的地方就是在我们插入一个已经存在的订单记录时就会抛出异常。

mysql行锁怎么实现

InnoDB 存储引擎中,行锁(Row Lock)基于索引 实现的,而不是基于物理数据行。如果查询 没有使用索引,InnoDB 可能会退化为 表锁,导致并发性能下降。

示例:基于索引的行锁

假设有如下 users 表:

CREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(50), age INT ); INSERT INTO users VALUES (1, 'Alice', 25), (2, 'Bob', 30);

✅ 正确:使用索引实现行锁

BEGIN; SELECT * FROM users WHERE id = 1 FOR UPDATE; -- 使用主键索引,锁住 id=1

  • id 是主键,MySQL 使用索引 来精确锁定 id = 1 这一行数据。
  • 其他事务 仍然可以修改 id ≠ 1 的行,不会发生锁冲突。

13.mysql的优化

先看慢日志查看哪条SQL是慢查询,再看是这个SQL是之前就存在的还是最近才执行的,如果是之前就有这条语句,那么说明就是数据有问题,如果查询出来的数据量超过70%,MySQL是不会走索引的,而是会做一个全表扫描。如果是新上的SQL就产生这个问题的,那么使用explain去分析,看看有没有走索引,走的索引是不是我想要的,看它读取的行数是否已经是最优化了,如果已经很优化了,它还是慢,那么它就是表太大,查询的行数太多了,这种情况可以从技术层面去优化,从业务层面去做一些优化,或者使用分表的方式来减轻数据库的压力等方式来处理。

1.慢日志:

图文结合带你搞懂MySQL日志之Slow Query Log(慢查询日志)-腾讯云开发者社区-腾讯云

打开慢日志:set global slow_query_log='ON';

查看慢日志的信息,包括文件位置:show variables like '%slow_query_log%';

慢查询的时间阈值设置:set global long_query_time = 1;

打开文件,里面记录慢查询sql语句 

2.explain:

关注哪些关键字:

要使用EXPLAIN关键字,只需在SQL查询语句前加上EXPLAIN

explain各个字段代表的意思
  • id :select查询的序列号,包含一组数字,表示查询中执行select子句或操作表的顺序
  • select_type :查询类型 或者是 其他操作类型
  • table :正在访问哪个表
  • partitions :匹配的分区
  • type :访问的类型  ALL: 这是最慢的类型,表示MySQL将对整个表进行全表扫描  index: 表示MySQL将扫描整个索引树。这比全表扫描快,但如果索引包含大量数据,仍然可能很慢。
  • possible_keys :显示可能应用在这张表中的索引,一个或多个,但不一定实际使用到
  • key :实际使用到的索引,如果为NULL,则没有使用索引
  • key_len :表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度
  • ref :显示索引的哪一列被使用了,如果可能的话,是一个常数,哪些列或常量被用于查找索引列上的值
  • Extra:包含不适合在其他列中显示但十分重要的额外信息。包含额外信息,如 Using filesort(使用文件排序)、Using temporary(使用临时表)、Using index(使用覆盖索引)等

index和Using index有啥区别

一个是type的index表示搜索所有索引树 一个是using index表示使用到覆盖索引


在编写查询语句时,你并不需要显式指定要使用哪个索引。相反,优化器会自动评估并选择最优的索引来执行查询。

所以我们需要查看语句是否使用索引,索引是否是我们想用的

如果不是,可以创建索引或者指定索引:

  • 单列索引:对单个列创建索引,适用于单列查询条件。

    CREATE INDEX idx_department ON employees(department);
  • 多列索引(复合索引):对多个列创建组合索引,适用于多列查询条件。

    CREATE INDEX idx_department_salary ON employees(department, salary);
  • 唯一索引:确保列值的唯一性,同时加快查询速度。

    CREATE UNIQUE INDEX idx_unique_email ON employees(email);

3.分库分表

如果已经很优化了,它还是慢,那么它就是表太大,查询的行数太多了,

要么和产品经理商量取消不需要的场景,要么就是考虑分库分表

什么是分库?

分库 就是将数据库中的数据分散到不同的数据库上,可以垂直分库,也可以水平分库。

垂直分库  垂直分库就是根据业务耦合性,将关联度低的不同表存储在不同的数据库。

举个例子:说你将数据库中的用户表、订单表和商品表分别单独拆分为用户数据库、订单数据库和商品数据库。

垂直分库

水平分库 是把同一个表按一定规则拆分到不同的数据库中,每个库可以位于不同的服务器上,这样就实现了水平扩展,解决了单表的存储和性能瓶颈的问题。

举个例子:订单表数据量太大,你对订单表进行了水平切分(水平分表),然后将切分后的 2 张订单表分别放在两个不同的数据库。

水平分库

什么是分表?

分表 就是对单表的数据进行拆分,可以是垂直拆分,也可以是水平拆分。

垂直分表 基于数据库中的"列"进行,某个表字段较多,可以新建一张扩展表,将不经常用或字段长度较大的字段拆分出去到扩展表中。

举个例子:我们可以将用户信息表中的一些列单独抽出来作为一个表。

水平分表 是对数据表行的拆分,把一张行比较多的表拆分为多张表,可以解决单一表数据量过大的问题。

举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。

水平拆分只能解决单表数据量大的问题,为了提升性能,我们通常会选择将拆分后的多张表放在不同的数据库中。也就是说,水平分表通常和水平分库同时出现。

怎么分呢:

  • 哈希分片:求指定分片键的哈希,然后根据哈希值确定数据应被放置在哪个表中。哈希分片比较适合随机读写的场景,不太适合经常需要范围查询的场景。哈希分片可以使每个表的数据分布相对均匀,但对动态伸缩(例如新增一个表或者库)不友好。
  • 范围分片:按照特定的范围区间(比如时间区间、ID 区间)来分配数据,比如 将 id1~299999 的记录分到第一个表, 300000~599999 的分到第二个表。范围分片适合需要经常进行范围查找且数据分布均匀的场景,不太适合随机读写的场景(数据未被分散,容易出现热点数据的问题)。
  • 映射表分片:使用一个单独的表(称为映射表)来存储分片键和分片位置的对应关系。映射表分片策略可以支持任何类型的分片算法,如哈希分片、范围分片等。映射表分片策略是可以灵活地调整分片规则,不需要修改应用程序代码或重新分布数据。不过,这种方式需要维护额外的表,还增加了查询的开销和复杂度。
  • 一致性哈希分片:将哈希空间组织成一个环形结构,将分片键和节点(数据库或表)都映射到这个环上,然后根据顺时针的规则确定数据或请求应该分配到哪个节点上,解决了传统哈希对动态伸缩不友好的问题。

分库分表的依据是什么

阿里的开发手册中有条建议,单表行数超 500 万行或者单表容量超过 2GB,就推荐分库分表

单表的数据量在达到亿条级别,通过加索引、SQL 调优等传统优化策略,性能提升依旧微乎其微时,就可以考虑做分库分表了。

就是单表数据量过大,数据量过大,正常运维影响业务访问,备份时需要大量的磁盘IO和网络IO。大表会经常访问与更新,就更有可能出现锁等待。

14.深度分页及其优化

在MySQL中,常见的分页查询通常使用 LIMIT 和 OFFSET 组合。当查询偏移量过大时,MySQL 的查询优化器可能会选择全表扫描而不是利用索引来优化查询。这是因为扫描索引和跳过大量记录可能比直接全表扫描更耗费资源。如果查询中使用了覆盖索引(covering index),MySQL 仍然可能会使用索引,避免回表操作。

解决方法:

1.范围查询

当可以保证 ID 的连续性时,根据 ID 范围进行分页是比较好的解决方案:

# 查询指定 ID 范围的数据
SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY id
# 也可以通过记录上次查询结果的最后一条记录的ID进行下一页的查询:
SELECT * FROM t_order WHERE id > 100000 LIMIT 10

这种基于 ID 范围的深度分页优化方式存在很大限制:

  1. ID 连续性要求高: 实际项目中,数据库自增 ID 往往因为各种原因(例如删除数据、事务回滚等)导致 ID 不连续,难以保证连续性。
  2. 排序问题: 如果查询需要按照其他字段(例如创建时间、更新时间等)排序,而不是按照 ID 排序,那么这种方法就不再适用。
  3. 并发场景: 在高并发场景下,单纯依赖记录上次查询的最后一条记录的 ID 进行分页,容易出现数据重复或遗漏的问题。

2.子查询

我们先查询出 limit 第一个参数对应的主键值,再根据这个主键值再去过滤并 limit,这样效率会更快一些。

阿里巴巴《Java 开发手册》中也有对应的描述:

利用延迟关联或者子查询优化超多分页场景。

# 通过子查询来获取 id 的起始值,把 limit 1000000 的条件转移到子查询
SELECT * FROM t_order WHERE id >= (SELECT id FROM t_order where id > 1000000 limit 1) LIMIT 10;

工作原理:

  1. 子查询 (SELECT id FROM t_order where id > 1000000 limit 1) 会利用主键索引快速定位到第 1000001 条记录,并返回其 ID 值。
  2. 主查询 SELECT * FROM t_order WHERE id >= ... LIMIT 10 将子查询返回的起始 ID 作为过滤条件,使用 id >= 获取从该 ID 开始的后续 10 条记录。

不过,子查询的结果会产生一张新表,会影响性能,应该尽量避免大量使用子查询。并且,这种方法只适用于 ID 是正序的。在复杂分页场景,往往需要通过过滤条件,筛选到符合条件的 ID,此时的 ID 是离散且不连续的。

当然,我们也可以利用子查询先去获取目标分页的 ID 集合,然后再根据 ID 集合获取内容,但这种写法非常繁琐,不如使用 INNER JOIN 延迟关联。

3.覆盖索引

索引中已经包含了所有需要获取的字段的查询方式称为覆盖索引。

覆盖索引的好处:

  • 避免 InnoDB 表进行索引的二次查询,也就是回表操作: InnoDB 是以聚集索引的顺序来存储的,对于 InnoDB 来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据的话,在查找到相应的键值后,还要通过主键进行二次查询才能获取我们真实所需要的数据。而在覆盖索引中,二级索引的键值中可以获取所有的数据,避免了对主键的二次查询(回表),减少了 IO 操作,提升了查询效率。
  • 可以把随机 IO 变成顺序 IO 加快查询效率: 由于覆盖索引是按键值的顺序存储的,对于 IO 密集型的范围查找来说,对比随机从磁盘读取每一行的数据 IO 要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的 IO 转变成索引查找的顺序 IO。

# 如果只需要查询 id, code, type 这三列,可建立 code 和 type 的覆盖索引
SELECT id, code, type FROM t_order
ORDER BY code
LIMIT 1000000, 10;

4.延迟关联

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值