基于U-Net和DeepLabv3+模型实现雷达遥感图像水体提取

转自ChatGPT,非原创,用于比较自己的模型。废话不多说,直接上代码~

  1. U-Net模型改进:
  • 使用更深的网络结构,例如加入更多的卷积层和池化层,以提高模型的表现力和泛化能力。
  • 使用不同的损失函数,例如Focal Loss,Dice Loss等,以提高模型对边缘信息的准确度。
  • 数据增强处理,例如旋转、翻转、缩放等,以增加数据的多样性,提高模型的鲁棒性。

以下是U-Net模型的代码:

import torch.nn as nn

class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(DoubleConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, 3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.conv(x)

class UNet(nn.Module):
    def __init__(self, in_channels=1, out_channels=1, features=[64, 128, 256, 512]):
        super(UNet, self).__init__()
        self.ups = nn.ModuleList()
        self.downs = nn.ModuleList()
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)

        # Down part of U-Net
        for feature in features:
            self.downs.append(DoubleConv(in_channels, feature))
            in_channels = feature

        # Up part of U-Net
        for feature in reversed(features):
            self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2))
            self.ups.append(DoubleConv(feature*2, feature))

        self.bottleneck = DoubleConv(features[-1], features[-1]*2)
        self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)

    def forward(self, x):
        skip_connections = []
        for down in self.downs:
            x = down(x)
            skip_connections.append(x)
            x = self.pool(x)

        x = self.bottleneck(x)
        skip_connections = skip_connections[::-1]

        for idx in range(0, len(self.ups), 2):
            x = self.ups[idx](x)
            skip_connection = skip_connections[idx//2]

            if x.shape != skip_connection.shape:
                x = TF.resize(x, size=skip_connection.shape[2:])

            concat_skip = torch.cat((skip_connection, x), dim=1)
            x = self.ups[idx+1](concat_skip)

        return self.final_conv(x)

2.DeepLabv3+模型改进:

  • 加入空间金字塔池化模块,提高模型对不同尺度信息的捕获能力。
  • 采用可变形卷积层,增加模型的感受野,提高模型对目标形状的适应性。
  • 采用多尺度训练和测试,提高模型对不同尺度目标的检测能力。

以下是DeepLabv3+模型的代码:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import model_zoo

model_urls = {
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
}

class ASPP(nn.Module):
    def __init__(self, in_channels, out_channels=256, rates=[6, 12, 18]):
        super(ASPP, self).__init__()
        self.conv1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.atrous_conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=rates[0], dilation=rates[0])
        self.atrous_conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=rates[1], dilation=rates[1])
        self.atrous_conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=rates[2], dilation=rates[2])
        self.pool = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, out_channels, kernel_size=1)
        )

        self.conv = nn.Conv2d(out_channels*5, out_channels, kernel_size=1)

    def forward(self, x):
        feature_map = self.conv1x1(x)
        atrous_1 = self.atrous_conv1(x)
        atrous_2 = self.atrous_conv2(x)
        atrous_3 = self.atrous_conv3(x)
        pool = F.interpolate(self.pool(x), size=feature_map.shape[2:], mode='bilinear', align_corners=True)

        x = torch.cat((feature_map, atrous_1, atrous_2, atrous_3, pool), dim=1)
        return self.conv(x)

class DeepLabv3Plus(nn.Module):
    def __init__(self, in_channels=3, out_channels=21, backbone='resnet50', pretrained=True):
        super(DeepLabv3Plus, self).__init__()
        if backbone == 'resnet50':
            resnet = models.resnet50(pretrained=pretrained)
            channels = 2048
        elif backbone == 'resnet101':
            resnet = models.resnet101(pretrained=pretrained)
            channels = 2048

        self.conv1 = resnet.conv1
        self.bn1 = resnet.bn1
        self.relu = resnet.relu
        self.maxpool = resnet.maxpool
        self.layer1 = resnet.layer1
        self.layer2 = resnet.layer2
        self.layer3 = resnet.layer3
        self.layer4 = resnet.layer4

        self.aspp = ASPP(channels)

        self.up_conv1 = nn.ConvTranspose2d(channels//2, channels//4, kernel_size=4, stride=2, padding=1)
        self.up_conv2 = nn.ConvTranspose2d(channels//4, channels//8, kernel_size=4, stride=2, padding=1)
        self.up_conv3 = nn.ConvTranspose2d(channels//8, channels//16, kernel_size=4, stride=2, padding=1)

        self.final_conv = nn.Conv2d(channels//16, out_channels, kernel_size=1)

    def forward(self, x):
        x_size = x.size()
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.aspp(x)

        x = self.up_conv1(x)
        x = F.interpolate(x, size=self.layer3(x).size()[2:], mode='bilinear', align_corners=True)

        x = torch.cat((x, self.layer3(x)), dim=1)
        x = self.up_conv2(x)
        x = F.interpolate(x, size=self.layer2(x).size()[2:], mode='bilinear', align_corners=True)

        x = torch.cat((x, self.layer2(x)), dim=1)
        x = self.up_conv3(x)
        x = F.interpolate(x, size=self.layer1(x).size()[2:], mode='bilinear', align_corners=True)

        x = torch.cat((x, self.layer1(x)), dim=1)
        x = self.final_conv(x)
        x = F.interpolate(x, size=x_size[2:], mode='bilinear', align_corners=True)

        return x

U-NetDeepLabv3+是常用的用于图像分割的神经网络模型,可以用于提取雷达遥感水体信息。以下是我对这两种模型的改进建议: 1. U-Net模型改进: - 使用更深的网络结构,例如加入更多的卷积层池化层,以提高模型的表现力泛化能力。 - 使用不同的损失函数,例如Focal Loss,Dice Loss等,以提高模型对边缘信息的准确度。 - 数据增强处理,例如旋转、翻转、缩放等,以增加数据的多样性,提高模型的鲁棒性。 以下是U-Net模型代码: ```python import torch.nn as nn class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels): super(DoubleConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.conv(x) class UNet(nn.Module): def __init__(self, in_channels=1, out_channels=1, features=[64, 128, 256, 512]): super(UNet, self).__init__() self.ups = nn.ModuleList() self.downs = nn.ModuleList() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # Down part of U-Net for feature in features: self.downs.append(DoubleConv(in_channels, feature)) in_channels = feature # Up part of U-Net for feature in reversed(features): self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2)) self.ups.append(DoubleConv(feature*2, feature)) self.bottleneck = DoubleConv(features[-1], features[-1]*2) self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1) def forward(self, x): skip_connections = [] for down in self.downs: x = down(x) skip_connections.append(x) x = self.pool(x) x = self.bottleneck(x) skip_connections = skip_connections[::-1] for idx in range(0, len(self.ups), 2): x = self.ups[idx](x) skip_connection = skip_connections[idx//2] if x.shape != skip_connection.shape: x = TF.resize(x, size=skip_connection.shape[2:]) concat_skip = torch.cat((skip_connection, x), dim=1) x = self.ups[idx+1](concat_skip) return self.final_conv(x) ``` 2. DeepLabv3+模型改进: - 加入空间金字塔池化模块,提高模型对不同尺度信息的捕获能力。 - 采用可变形卷积层,增加模型的感受野,提高模型对目标形状的适应性。 - 采用多尺度训练测试,提高模型对不同尺度目标的检测能力。 以下是DeepLabv3+模型代码: ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.utils import model_zoo model_urls = { 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', } class ASPP(nn.Module): def __init__(self, in_channels, out_channels=256, rates=[6, 12, 18]): super(ASPP, self).__init__() self.conv1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.atrous_conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=rates[0], dilation=rates[0]) self.atrous_conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=rates[1], dilation=rates[1]) self.atrous_conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=rates[2], dilation=rates[2]) self.pool = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, out_channels, kernel_size=1) ) self.conv = nn.Conv2d(out_channels*5, out_channels, kernel_size=1) def forward(self, x): feature_map = self.conv1x1(x) atrous_1 = self.atrous_conv1(x) atrous_2 = self.atrous_conv2(x) atrous_3 = self.atrous_conv3(x) pool = F.interpolate(self.pool(x), size=feature_map.shape[2:], mode='bilinear', align_corners=True) x = torch.cat((feature_map, atrous_1, atrous_2, atrous_3, pool), dim=1) return self.conv(x) class DeepLabv3Plus(nn.Module): def __init__(self, in_channels=3, out_channels=21, backbone='resnet50', pretrained=True): super(DeepLabv3Plus, self).__init__() if backbone == 'resnet50': resnet = models.resnet50(pretrained=pretrained) channels = 2048 elif backbone == 'resnet101': resnet = models.resnet101(pretrained=pretrained) channels = 2048 self.conv1 = resnet.conv1 self.bn1 = resnet.bn1 self.relu = resnet.relu self.maxpool = resnet.maxpool self.layer1 = resnet.layer1 self.layer2 = resnet.layer2 self.layer3 = resnet.layer3 self.layer4 = resnet.layer4 self.aspp = ASPP(channels) self.up_conv1 = nn.ConvTranspose2d(channels//2, channels//4, kernel_size=4, stride=2, padding=1) self.up_conv2 = nn.ConvTranspose2d(channels//4, channels//8, kernel_size=4, stride=2, padding=1) self.up_conv3 = nn.ConvTranspose2d(channels//8, channels//16, kernel_size=4, stride=2, padding=1) self.final_conv = nn.Conv2d(channels//16, out_channels, kernel_size=1) def forward(self, x): x_size = x.size() x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.aspp(x) x = self.up_conv1(x) x = F.interpolate(x, size=self.layer3(x).size()[2:], mode='bilinear', align_corners=True) x = torch.cat((x, self.layer3(x)), dim=1) x = self.up_conv2(x) x = F.interpolate(x, size=self.layer2(x).size()[2:], mode='bilinear', align_corners=True) x = torch.cat((x, self.layer2(x)), dim=1) x = self.up_conv3(x) x = F.interpolate(x, size=self.layer1(x).size()[2:], mode='bilinear', align_corners=True) x = torch.cat((x, self.layer1(x)), dim=1) x = self.final_conv(x) x = F.interpolate(x, size=x_size[2:], mode='bilinear', align_corners=True) return x ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值