基于深度学习的番茄识别与实例分割

本文提出了一种基于改进Mask RCNN的番茄检测算法,通过使用ResNet50+FPN和空洞卷积,提高了番茄识别的准确率和实例分割的质量。与Faster RCNN和原始Mask RCNN相比,改进模型的AP和AR值显著提升,显示出在番茄检测和实例分割上的优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

目前番茄采摘主要依靠人工,实现番茄产业机械化和智能化刻不容缓,而番茄检测是最基础也最重要的一步。针对该问题,提出一种基于改进Mask RCNN的番茄检测算法。该算法选择ResNet50和FPN作为主干网络,提出一种新型RoI提取器,并在算法模型中使用空洞卷积(Atrous)。通过Labelme自制番茄数据集,将改进算法在自制数据集上进行训练和测试。结果表明,与Faster RCNN和Mask RCNN模型相比,改进后的模型AP值分别提高了5.5%和4.7%,AR值分别提升了6.8%和4.6%。该算法不仅提高了番茄的识别准确率,还更好地实现了实例分割。

0 引言

在我国,随着机器视觉技术的快速发展,图像处理已成为贯穿农业产业链各个阶段的重要技术之一,在选种适配、生长过程、采摘方式及水果质量检测等多个环节均有涉及

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值