【摘要】针对现有通信系统物理层中存在的问题,提出了人工智能(AI)中的机器学习(ML)技术来解决其难题。梳理了AI/ML技术在这些方面的优势与挑战,并给出了有关干扰检测、端到端物理层联合优化等方面的若干典型范例。AI/ML技术的崛起会为下一代通信系统的设计提供一种超越传统理念与性能的可能性。
【关键词】人工智能;机器学习;物理层;干扰检测;端到端联合优化
0 引言
随着近些年现代计算与数据存储技术的迅猛发展,人工智能(Artificial Intelligence, AI)技术也随之广泛地应用于人们的生产生活中,其中最关键的机器学习(Machine Learning, ML)技术也为解决很多无法建立数学模型的难题提供技术支持。因此,研究人员很自然地也希望把AI/ML技术引入到无线通信系统中来解决传统接入网中的技术难题。事实上,无线接入网中有很多地方无法用严格的数学模型加以准确地描述,尤其是在无线接入侧的高层,同时无线接入网每时每刻也会产生海量的数据需要分析,这也大大增加了系统设计的复杂度。当下一代通信6G被定义为超通信时代后,无线接入网的高层又承担了更多业务层面的功能,比如对数据包的分类,识别等,这些功能需求均比较适合AI/ML技术进行处理。
此外,AI/ML的架