源码链接:https://github.com/wanglouis49/pytorch-adversarial_box
在LeNet5上进行黑盒攻击
FGSM生成对抗样本
substituteModel上训练
def MNIST_bbox_sub(param, loader_hold_out, loader_test):
# Setup training
optimizer = torch.optim.Adam(net.parameters(), lr=param['learning_rate'])
# Data held out for initial training
# .....
# 训练
for rho in range(param['data_aug']):
print("Substitute training epoch #"+str(rho))
print("Training data: "+str(len(X_sub)))
rng = np.random.RandomState

最低0.47元/天 解锁文章
2950

被折叠的 条评论
为什么被折叠?



