一、相关概念
决策树:
- 决策树(DecisionTree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy= 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
- 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。
- 分类树(决策树)是一种十分常用的分类方法。它是一种监督学习,所谓监督学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。
基尼指数: - 基尼指数(Gini不纯度)表示在样本集合中一个随机选中的样本被分错的概率。
- 注意:Gini指数越小表示集合中被选中的样本被参错的概率越小,也就是说集合的纯度越高,反之,集合越不纯。当集合中所有样本为一个类时,基尼指数为0.
- 基尼指数的计算方法为:
信息熵:
- 所谓信息熵,是一个数学上颇为抽象的概念,在这里不妨把信息熵理解成某种特定信息的出现概率。而信息熵和热力学熵是紧密相关的。根CharlesH. Bennett对Maxwell’sDemon的重新解释,对信息的销毁是一个不可逆过程,所以销毁信息是符合热力学第二定律的。而产生信息,则是为系统引入负(热力学)熵的过程。所以信息熵的符号与热力学熵应该是相反的。
- 一般而言,当一种信息出现概率更高的时候,表明它被传播得更广泛,或者说,被引用的程度更高。我们可以认为,从信息传播的角度来看,信息熵可以表示信息的价值。这样子我们就有一个衡量信息价值高低的标准,可以做出关于知识流通问题的更多推论。
计算公式:
- 其中,x表示随机变量,与之相对应的是所有可能输出的集合,定义为符号集,随机变量的输出用x表示。P(x)表示输出概率函数。变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大.
ID3算法:
- ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。
- ID3算法是由Quinlan首先提出的。该算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。以下是一些信息论的基本概念:
- 定义1:若存在n个相同概率的消息,则每个消息的概率p是1/n,一个消息传递的信息量为-Log2(1/n)
- 定义2:若有n个消息,其给定概率分布为P=(p1,p2…pn),则由该分布传递的信息量称为P的熵,记为 。
- 定义3:若一个记录集合T根据类别属性的值被分成互相独立的类C1C2…Ck,则识别T的一个元素所属哪个类所需要的信息量为Info(T)=I§,其中P为C1C2…Ck的概率分布,即P=(|C1|/|T|,……|Ck|/|T|)
- 定义4:若我们先根据非类别属性X的值将T分成集合T1,T2…Tn,则确定T中一个元素类的信息量可通过确定Ti的加权平均值来得到,即Info(Ti)的加权平均值为:
Info(X, T)=(i=1 to n 求和)((|Ti|/|T|)Info(Ti)) - 定义5:信息增益度是两个信息量之间的差值,其中一个信息量是需确定T的一个元素的信息量,另一个信息量是在已得到的属性X的值后需确定的T一个元素的信息量,信息增益度公式为:
Gain(X, T)=Info(T)-Info(X, T) - ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定集合的测试属性。对被选取的测试属性创建一个节点,并以该节点的属性标记,对该属性的每个值创建一个分支据此划分样本.
C4.5算法:
- C4.5是ID3的一个改进算法。
- C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
- 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
- 在树构造过程中进行剪枝;
- 能够完成对连续属性的离散化处理;
- 能够对不完整数据进行处理。
- C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
CART算法:
- Classification And Regression
Tree,即分类回归树算法,简称CART算法,它是决策树的一种实现,通常决策树主要有三种实现,分别是ID3算法,CART算法和C4.5算法。
CART算法是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支,因此CART算法生成的决策树是结构简洁的二叉树。由于CART算法构成的是一个二叉树,它在每一步的决策时只能是“是”或者“否”,即使一个feature有多个取值,也是把数据分为两部分。在CART算法中主要分为两个步骤 - (1)将样本递归划分进行建树过程
选一个自变量,再选取的一个值,把维空间划分为两部分,一部分的所有点都满足,另一部分的所有点都满足,对非连续变量来说属性值的取值只有两个,即等于该值或不等于该值。 - (2)用验证数据进行剪枝
递归处理,将上面得到的两部分按步骤(1)重新选取一个属性继续划分,直到把整个维空间都划分完。在划分时候有一个问题,它是按照什么标准来划分的 ? 对于一个变量属性来说,它的划分点是一对连续变量属性值的中点。假设个样本的集合一个属性有个连续的值,那么则会有个分裂点,每个分裂点为相邻两个连续值的均值。每个属性的划分按照能减少的杂质的量来进行排序,而杂质的减少量定义为划分前的杂质减去划分后的每个节点的杂质量划分所占比率之和。而杂质度量方法常用Gini指标,假设一个样本共有类,那么一个节点的Gini不纯度可定义为:
其中pi表示属于第i类的概率,当Gini(A)=0时,所有样本属于同类,所有类在节点中以等概率出现时,Gini(A)最大化,此时:
pi有了上述理论基础,实际的递归划分过程是这样的:如果当前节点的所有样本都不属于同一类或者只剩下一个样本,那么此节点为非叶子节点,所以会尝试样本的每个属性以及每个属性对应的分裂点,尝试找到杂质变量最大的一个划分,该属性划分的子树即为最优分支。
二、ID3算法实现
1、直接实现
- 导入包
#直接实现ID3算法
import numpy as np
import pandas as pd
import math
import collections
- 导入并读取数据
def import_data():
data = pd.read_csv('watermalon.txt')
data.head(10)
data=np.array(data).tolist()
# 特征值列表
labels = ['色泽', '根蒂', '敲击', '纹理', '脐部', '触感']
# 特征对应的所有可能的情况
labels_full = {}
for i in range(len(labels)):
labelList = [example[i] for example in data]
uniqueLabel = set(labelList)
labels_full[labels[i]] = uniqueLabel
return data,labels,labels_full
- 调用函数计算出所需要的值
data,labels,labels_full=import_data()
- 计算初始信息商
#计算初始信息商
def calcShannonEnt(dataSet):
"""
计算给定数据集的信息熵(香农熵)
:param dataSet:
:return:
"""
# 计算出数据集的总数
numEntries = len(dataSet)
# 用来统计标签
labelCounts = collections.defaultdict(int)
# 循环整个数据集,得到数据的分类标签
for featVec in dataSet:
# 得到当前的标签
currentLabel = featVec[-1]
# # 如果当前的标签不再标签集中,就添加进去(书中的写法)
# if currentLabel not in labelCounts.keys():
# labelCounts[currentLabel] = 0
#
# # 标签集中的对应标签数目加一
# labelCounts[currentLabel] += 1
# 也可以写成如下
labelCounts[currentLabel] += 1
# 默认的信息熵
shannonEnt = 0.0
for key in labelCounts:
# 计算出当前分类标签占总标签的比例数
prob = float(labelCounts[key]) / numEntries
# 以2为底求对数
shannonEnt -= prob * math.log2(prob)
return shannonEnt
- 查看初始信息熵
print(calcShannonEnt(data))
- 获取每个特征值的数量
#获取每个特征值的数量
def splitDataSet(dataSet, axis, value):
"""
按照给定的特征值,将数据集划分
:param dataSet: 数据集
:param axis: 给定特征值的坐标
:param value: 给定特征值满足的条件,只有给定特征值等于这个value的时候才会返回
:return:
"""
# 创建一个新的列表,防止对原来的列表进行修改
retDataSet = []
# 遍历整个数据集
for featVec in dataSet:
# 如果给定特征值等于想要的特征值
if featVec[axis] == value:
# 将该特征值前面的内容保存起来
reducedFeatVec = featVec[:axis]
# 将该特征值后面的内容保存起来,所以将给定特征值给去掉了
reducedFeatVec.extend(featVec[axis + 1:])
# 添加到返回列表中
retDataSet.append(reducedFeatVec)
return retDataSet
- 计算信息增益
#计算信息增益
def chooseBestFeatureToSplit(dataSet, labels):
"""
选择最好的数据集划分特征,根据信息增益值来计算
:param dataSet:
:return:
"""
# 得到数据的特征值总数
numFeatures = len(dataSet[0]) - 1
# 计算出基础信息熵
baseEntropy = calcShannonEnt(dataSet)
# 基础信息增益为0.0
bestInfoGain = 0.0
# 最好的特征值
bestFeature = -1
# 对每个特征值进行求信息熵
for i in range(numFeatures):
# 得到数据集中所有的当前特征值列表
featList = [example[i] for example in dataSet]
# 将当前特征唯一化,也就是说当前特征值中共有多少种
uniqueVals = set(featList)
# 新的熵,代表当前特征值的熵
newEntropy = 0.0
# 遍历现在有的特征的可能性
for value in uniqueVals:
# 在全部数据集的当前特征位置上,找到该特征值等于当前值的集合
subDataSet = splitDataSet(dataSet=dataSet, axis=i, value=value)
# 计算出权重
prob = len(subDataSet) / float(len(dataSet))
# 计算出当前特征值的熵
newEntropy += prob * calcShannonEnt(subDataSet)
# 计算出“信息增益”
infoGain = baseEntropy - newEntropy
#print('当前特征值为:' + labels[i] + ',对应的信息增益值为:' + str(infoGain)+"i等于"+str(i))
#如果当前的信息增益比原来的大
if infoGain > bestInfoGain:
# 最好的信息增益
bestInfoGain = infoGain
# 新的最好的用来划分的特征值
bestFeature = i
#print('信息增益最大的特征为:' + labels[bestFeature])
return bestFeature
- 判断数据集的各个属性集是否完全一致
#判断数据集的各个属性集是否完全一致
def judgeEqualLabels(dataSet):
"""
判断数据集的各个属性集是否完全一致
:param dataSet:
:return:
"""
# 计算出样本集中共有多少个属性,最后一个为类别
feature_leng = len(dataSet[0]) - 1
# 计算出共有多少个数据
data_leng = len(dataSet)
# 标记每个属性中第一个属性值是什么
first_feature = ''
# 各个属性集是否完全一致
is_equal = True
# 遍历全部属性
for i in range(feature_leng):
# 得到第一个样本的第i个属性
first_feature = dataSet[0][i]
# 与样本集中所有的数据进行对比,看看在该属性上是否都一致
for _ in range(1, data_leng):
# 如果发现不相等的,则直接返回False
if first_feature != dataSet[_][i]:
return False
return is_equal
- 创建决策树
#创建决策树
def createTree(dataSet, labels):
"""
创建决策树
:param dataSet: 数据集
:param labels: 特征标签
:return:
"""
# 拿到所有数据集的分类标签
classList = [example[-1] for example in dataSet]
# 统计第一个标签出现的次数,与总标签个数比较,如果相等则说明当前列表中全部都是一种标签,此时停止划分
if classList.count(classList[0]) == len(classList):
return classList[0]
# 计算第一行有多少个数据,如果只有一个的话说明所有的特征属性都遍历完了,剩下的一个就是类别标签,或者所有的样本在全部属性上都一致
if len(dataSet[0]) == 1 or judgeEqualLabels(dataSet):
# 返回剩下标签中出现次数较多的那个
return majorityCnt(classList)
# 选择最好的划分特征,得到该特征的下标
bestFeat = chooseBestFeatureToSplit(dataSet=dataSet, labels=labels)
print(bestFeat)
# 得到最好特征的名称
bestFeatLabel = labels[bestFeat]
print(bestFeatLabel)
# 使用一个字典来存储树结构,分叉处为划分的特征名称
myTree = {bestFeatLabel: {}}
# 将本次划分的特征值从列表中删除掉
del(labels[bestFeat])
# 得到当前特征标签的所有可能值
featValues = [example[bestFeat] for example in dataSet]
# 唯一化,去掉重复的特征值
uniqueVals = set(featValues)
# 遍历所有的特征值
for value in uniqueVals:
# 得到剩下的特征标签
subLabels = labels[:]
subTree = createTree(splitDataSet(dataSet=dataSet, axis=bestFeat, value=value), subLabels)
# 递归调用,将数据集中该特征等于当前特征值的所有数据划分到当前节点下,递归调用时需要先将当前的特征去除掉
myTree[bestFeatLabel][value] = subTree
return myTree
- 调用函数并打印字典类型树
#调用函数并打印字典类型树
mytree=createTree(data,labels)
print(mytree)
- 绘制可视化树
#绘制可视化树
import matplotlib.pylab as plt
import matplotlib
# 能够显示中文
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['font.serif'] = ['SimHei']
# 分叉节点,也就是决策节点
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
# 叶子节点
leafNode = dict(boxstyle="round4", fc="0.8")
# 箭头样式
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
"""
绘制一个节点
:param nodeTxt: 描述该节点的文本信息
:param centerPt: 文本的坐标
:param parentPt: 点的坐标,这里也是指父节点的坐标
:param nodeType: 节点类型,分为叶子节点和决策节点
:return:
"""
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
xytext=centerPt, textcoords='axes fraction',
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
def getNumLeafs(myTree):
"""
获取叶节点的数目
:param myTree:
:return:
"""
# 统计叶子节点的总数
numLeafs = 0
# 得到当前第一个key,也就是根节点
firstStr = list(myTree.keys())[0]
# 得到第一个key对应的内容
secondDict = myTree[firstStr]
# 递归遍历叶子节点
for key in secondDict.keys():
# 如果key对应的是一个字典,就递归调用
if type(secondDict[key]).__name__ == 'dict':
numLeafs += getNumLeafs(secondDict[key])
# 不是的话,说明此时是一个叶子节点
else:
numLeafs += 1
return numLeafs
def getTreeDepth(myTree):
"""
得到数的深度层数
:param myTree:
:return:
"""
# 用来保存最大层数
maxDepth = 0
# 得到根节点
firstStr = list(myTree.keys())[0]
# 得到key对应的内容
secondDic = myTree[firstStr]
# 遍历所有子节点
for key in secondDic.keys():
# 如果该节点是字典,就递归调用
if type(secondDic[key]).__name__ == 'dict':
# 子节点的深度加1
thisDepth = 1 + getTreeDepth(secondDic[key])
# 说明此时是叶子节点
else:
thisDepth = 1
# 替换最大层数
if thisDepth > maxDepth:
maxDepth = thisDepth
return maxDepth
def plotMidText(cntrPt, parentPt, txtString):
"""
计算出父节点和子节点的中间位置,填充信息
:param cntrPt: 子节点坐标
:param parentPt: 父节点坐标
:param txtString: 填充的文本信息
:return:
"""
# 计算x轴的中间位置
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
# 计算y轴的中间位置
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
# 进行绘制
createPlot.ax1.text(xMid, yMid, txtString)
def plotTree(myTree, parentPt, nodeTxt):
"""
绘制出树的所有节点,递归绘制
:param myTree: 树
:param parentPt: 父节点的坐标
:param nodeTxt: 节点的文本信息
:return:
"""
# 计算叶子节点数
numLeafs = getNumLeafs(myTree=myTree)
# 计算树的深度
depth = getTreeDepth(myTree=myTree)
# 得到根节点的信息内容
firstStr = list(myTree.keys())[0]
# 计算出当前根节点在所有子节点的中间坐标,也就是当前x轴的偏移量加上计算出来的根节点的中心位置作为x轴(比如说第一次:初始的x偏移量为:-1/2W,计算出来的根节点中心位置为:(1+W)/2W,相加得到:1/2),当前y轴偏移量作为y轴
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
# 绘制该节点与父节点的联系
plotMidText(cntrPt, parentPt, nodeTxt)
# 绘制该节点
plotNode(firstStr, cntrPt, parentPt, decisionNode)
# 得到当前根节点对应的子树
secondDict = myTree[firstStr]
# 计算出新的y轴偏移量,向下移动1/D,也就是下一层的绘制y轴
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
# 循环遍历所有的key
for key in secondDict.keys():
# 如果当前的key是字典的话,代表还有子树,则递归遍历
if isinstance(secondDict[key], dict):
plotTree(secondDict[key], cntrPt, str(key))
else:
# 计算新的x轴偏移量,也就是下个叶子绘制的x轴坐标向右移动了1/W
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
# 打开注释可以观察叶子节点的坐标变化
# print((plotTree.xOff, plotTree.yOff), secondDict[key])
# 绘制叶子节点
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
# 绘制叶子节点和父节点的中间连线内容
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
# 返回递归之前,需要将y轴的偏移量增加,向上移动1/D,也就是返回去绘制上一层的y轴
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
def createPlot(inTree):
"""
需要绘制的决策树
:param inTree: 决策树字典
:return:
"""
# 创建一个图像
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
# 计算出决策树的总宽度
plotTree.totalW = float(getNumLeafs(inTree))
# 计算出决策树的总深度
plotTree.totalD = float(getTreeDepth(inTree))
# 初始的x轴偏移量,也就是-1/2W,每次向右移动1/W,也就是第一个叶子节点绘制的x坐标为:1/2W,第二个:3/2W,第三个:5/2W,最后一个:(W-1)/2W
plotTree.xOff = -0.5/plotTree.totalW
# 初始的y轴偏移量,每次向下或者向上移动1/D
plotTree.yOff = 1.0
# 调用函数进行绘制节点图像
plotTree(inTree, (0.5, 1.0), '')
# 绘制
plt.show()
if __name__ == '__main__':
createPlot(mytree)
- 会发现缺少一些标签,进行补全
def makeTreeFull(myTree, labels_full, default):
"""
将树中的不存在的特征标签进行补全,补全为父节点中出现最多的类别
:param myTree: 生成的树
:param labels_full: 特征的全部标签
:param parentClass: 父节点中所含最多的类别
:param default: 如果缺失标签中父节点无法判断类别则使用该值
:return:
"""
# 这里所说的父节点就是当前根节点,把当前根节点下不存在的特征标签作为子节点
# 拿到当前的根节点
root_key = list(myTree.keys())[0]
# 拿到根节点下的所有分类,可能是子节点(好瓜or坏瓜)也可能不是子节点(再次划分的属性值)
sub_tree = myTree[root_key]
# 如果是叶子节点就结束
if isinstance(sub_tree, str):
return
# 找到使用当前节点分类下最多的种类,该分类结果作为新特征标签的分类,如:色泽下面没有浅白则用色泽中有的青绿分类作为浅白的分类
root_class = []
# 把已经分好类的结果记录下来
for sub_key in sub_tree.keys():
if isinstance(sub_tree[sub_key], str):
root_class.append(sub_tree[sub_key])
# 找到本层出现最多的类别,可能会出现相同的情况取其一
if len(root_class):
most_class = collections.Counter(root_class).most_common(1)[0][0]
else:
most_class = None# 当前节点下没有已经分类好的属性
# print(most_class)
# 循环遍历全部特征标签,将不存在标签添加进去
for label in labels_full[root_key]:
if label not in sub_tree.keys():
if most_class is not None:
sub_tree[label] = most_class
else:
sub_tree[label] = default
# 递归处理
for sub_key in sub_tree.keys():
if isinstance(sub_tree[sub_key], dict):
makeTreeFull(myTree=sub_tree[sub_key], labels_full=labels_full, default=default)
- 再次输出
makeTreeFull(mytree,labels_full,default='未知')
createPlot(mytree)
2、sklearn库实现
- 导入包
#使用Sklearn库实现ID3算法
# 导入包
import pandas as pd
from sklearn import tree# abc
import graphviz
- 读取数据
df = pd.read_csv('watermalon.txt')
df.head(10)
- 将特征值全部转化为数字
#将特征值全部转化为数字
df['色泽']=df['色泽'].map({'浅白':1,'青绿':2,'乌黑':3})
df['根蒂']=df['根蒂'].map({'稍蜷':1,'蜷缩':2,'硬挺':3})
df['敲声']=df['敲声'].map({'清脆':1,'浊响':2,'沉闷':3})
df['纹理']=df['纹理'].map({'清晰':1,'稍糊':2,'模糊':3})
df['脐部']=df['脐部'].map({'平坦':1,'稍凹':2,'凹陷':3})
df['触感'] = np.where(df['触感']=="硬滑",1,2)
df['好瓜'] = np.where(df['好瓜']=="是",1,0)
x_train=df[['色泽','根蒂','敲声','纹理','脐部','触感']]
y_train=df['好瓜']
print(df)
id3=tree.DecisionTreeClassifier(criterion='entropy')
id3=id3.fit(x_train,y_train)
print(id3)
- 训练并进行可视化
#训练并进行可视化
id3=tree.DecisionTreeClassifier(criterion='entropy')
id3=id3.fit(x_train,y_train)
labels = ['色泽', '根蒂', '敲击', '纹理', '脐部', '触感']
dot_data = tree.export_graphviz(id3
,feature_names=labels
,class_names=["好瓜","坏瓜"]
,filled=True
,rounded=True
)
graph = graphviz.Source(dot_data)
graph
三、C4.5算法实现
- 由于变得不多,只是把得到信息增益的那步再增加一步,得到信息增益率
#sklearn库实现C4.5算法
## 实现C4.5算法
def chooseBestFeatureToSplit_4(dataSet, labels):
"""
选择最好的数据集划分特征,根据信息增益值来计算
:param dataSet:
:return:
"""
# 得到数据的特征值总数
numFeatures = len(dataSet[0]) - 1
# 计算出基础信息熵
baseEntropy = calcShannonEnt(dataSet)
# 基础信息增益为0.0
bestInfoGain = 0.0
# 最好的特征值
bestFeature = -1
# 对每个特征值进行求信息熵
for i in range(numFeatures):
# 得到数据集中所有的当前特征值列表
featList = [example[i] for example in dataSet]
# 将当前特征唯一化,也就是说当前特征值中共有多少种
uniqueVals = set(featList)
# 新的熵,代表当前特征值的熵
newEntropy = 0.0
# 遍历现在有的特征的可能性
for value in uniqueVals:
# 在全部数据集的当前特征位置上,找到该特征值等于当前值的集合
subDataSet = splitDataSet(dataSet=dataSet, axis=i, value=value)
# 计算出权重
prob = len(subDataSet) / float(len(dataSet))
# 计算出当前特征值的熵
newEntropy += prob * calcShannonEnt(subDataSet)
# 计算出“信息增益”
infoGain = baseEntropy - newEntropy
infoGain = infoGain/newEntropy
#print('当前特征值为:' + labels[i] + ',对应的信息增益值为:' + str(infoGain)+"i等于"+str(i))
#如果当前的信息增益比原来的大
if infoGain > bestInfoGain:
# 最好的信息增益
bestInfoGain = infoGain
# 新的最好的用来划分的特征值
bestFeature = i
#print('信息增益最大的特征为:' + labels[bestFeature])
return bestFeature
- 创建决策树
#创建决策树
def createTree_4(dataSet, labels):
"""
创建决策树
:param dataSet: 数据集
:param labels: 特征标签
:return:
"""
# 拿到所有数据集的分类标签
classList = [example[-1] for example in dataSet]
# 统计第一个标签出现的次数,与总标签个数比较,如果相等则说明当前列表中全部都是一种标签,此时停止划分
if classList.count(classList[0]) == len(classList):
return classList[0]
# 计算第一行有多少个数据,如果只有一个的话说明所有的特征属性都遍历完了,剩下的一个就是类别标签,或者所有的样本在全部属性上都一致
if len(dataSet[0]) == 1 or judgeEqualLabels(dataSet):
# 返回剩下标签中出现次数较多的那个
return majorityCnt(classList)
# 选择最好的划分特征,得到该特征的下标
bestFeat = chooseBestFeatureToSplit_4(dataSet=dataSet, labels=labels)
print(bestFeat)
# 得到最好特征的名称
bestFeatLabel = labels[bestFeat]
print(bestFeatLabel)
# 使用一个字典来存储树结构,分叉处为划分的特征名称
myTree = {bestFeatLabel: {}}
# 将本次划分的特征值从列表中删除掉
del(labels[bestFeat])
# 得到当前特征标签的所有可能值
featValues = [example[bestFeat] for example in dataSet]
# 唯一化,去掉重复的特征值
uniqueVals = set(featValues)
# 遍历所有的特征值
for value in uniqueVals:
# 得到剩下的特征标签
subLabels = labels[:]
subTree = createTree(splitDataSet(dataSet=dataSet, axis=bestFeat, value=value), subLabels)
# 递归调用,将数据集中该特征等于当前特征值的所有数据划分到当前节点下,递归调用时需要先将当前的特征去除掉
myTree[bestFeatLabel][value] = subTree
return myTree
- 查看字典型决策树
#查看字典型决策树
mytree_4=createTree_4(data,labels)
print(mytree_4)
- 生成可视化决策树
#生成可视化决策树
makeTreeFull(mytree_4,labels_full,default='未知')
createPlot(mytree_4)
四、CART算法实现
- 导入包
#导入包
import pandas as pd
from sklearn import tree
import graphviz
- 导入数据并读取
#导入数据并读取
df = pd.read_csv('watermalon.txt')
df.head(10)
- 将特征值数字化
#将特征值数字化
df['色泽']=df['色泽'].map({'浅白':1,'青绿':2,'乌黑':3})
df['根蒂']=df['根蒂'].map({'稍蜷':1,'蜷缩':2,'硬挺':3})
df['敲声']=df['敲声'].map({'清脆':1,'浊响':2,'沉闷':3})
df['纹理']=df['纹理'].map({'清晰':1,'稍糊':2,'模糊':3})
df['脐部']=df['脐部'].map({'平坦':1,'稍凹':2,'凹陷':3})
df['触感'] = np.where(df['触感']=="硬滑",1,2)
df['好瓜'] = np.where(df['好瓜']=="是",1,0)
x_train=df[['色泽','根蒂','敲声','纹理','脐部','触感']]
y_train=df['好瓜']
- 构建模型并训练输出可视化决策树
# 构建模型并训练输出可视化决策树
gini=tree.DecisionTreeClassifier()
gini=gini.fit(x_train,y_train)
labels = ['色泽', '根蒂', '敲击', '纹理', '脐部', '触感']
#实现决策树的可视化
gini_data = tree.export_graphviz(gini
,feature_names=labels
,class_names=["好瓜","坏瓜"]
,filled=True
,rounded=True)
gini_graph = graphviz.Source(gini_data)
gini_graph
五、总结
决策树的概念比较容易理解,但是要区分好每种算法的不同点以及步骤,还有每种算法的基本原理,最后根据结果就可以知道采取哪种方法更合适。