OpenCV-迷宫解密

本文介绍了如何利用OpenCV解决迷宫问题。通过图像二值化、轮廓检测、阈值处理、图像扩展和侵蚀操作,逐步找出迷宫的出口。最终通过代码实现,展示了解谜过程,速度优于肉眼寻找。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、你能自己走出迷宫吗?

        如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜恐怕眼睛有点小难受,特别是走了半天发现这迷宫无解,代入一下已经生气了,所以我们何必不直接开挂,使用opencv来代替我们寻找最优解。

        恩,不错,那就整!

        注:图像自己截图获取即可。

二、使用OpenCV找出出口。

1、对图像进行二值化处理。

此时我们的图像就反了过来,我们只需要找到一条从入口连续到出口的黑线即可。

import cv2
import numpy as np

img = cv2.imread('../photos/1.png')
# cv2.imshow('maze',img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()

#对图像进行二值化
# Binary conversion
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#反转tholdolding将给我们一个二进制的图像与白色的墙壁和黑色的背景。
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
cv2.imshow('THRESH_BINARY_INV',thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()

2、 对二值化后的图像进行轮廓检测并标注

可以看到大致路线已经出现。

#对二值化处理的图像进行轮廓检测并标注
# Contours
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
                                       cv2.CHAIN_APPROX_NONE)
print('l
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醉翁之意不在酒~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值