【ensp】IS-IS基础(对比OSPF)

07/12课堂笔记

一些名词:

is-is(中间系统到中间系统):这是只为OSI七层模型服务的,我们现在使用的是集成IS-IS

CLNP(无连接网络协议):在通信之前不需要建立连接,IP也是一种无连接网络协议

NSAP(网络服务访问点):描述设备的地址,主要用于提供网路层和上层应用之间的接口

IDP:相当于IP地址中的主网络号

DSP:
它由High Order DSP、System ID和SEL三个部分组成。
High Order DSP用来分割区域,System ID用来区分主机,SEL用来指示服务类型。

SYSTEM ID:
唯一标识一个路由,是十六进制
这里给出个DSP(49.0001.0000.0000.000a.00),49.0001.标识所属区域,中间则是system-id,句尾的两个00一般代表使用ip协议

集成IS-IS:
基于TLV(type length value),扩展性特别强
它支持CLNP网络和IP网络
支持两种类型的网络:P2P、广播型网络

128号TLV:携带域内的IS-IS路由信息
130号TLV:携带域外的
2号TLV:携带邻居关系

IS-IS的9种报文:

  • IIH:类似于OSPF中的hello,建立和维持邻接关系,这里分了3种IIH,level-1的和level-2的IIH,P2P的IIH

  • LSP:类似于OSPF中的LSA,这里分为2种,level-1的LSP和level-2的LSP

  • CSNP:类似于OSPF中的dd报文,此处分为2种,level-1的csnp和level-2的csnp

  • CSNP包含该设备LSDB中所有的LSP摘要。

  • PSNP:类似于OSPF中的dd报文,此处也分为2种,level-1的和level-2的,它的作用是请求自己没有的路由

路由器通过交互 CSNP来判断是否需要同步LSDB。
在广播网络上,CSNP由DIS定期发送(缺省的发送周期为10秒)。
在点到点网络上,CSNP只在第一次建立邻接关系时发送。

DIS:

  1. 相当于OSPF的DR,点到点没有此字段,可以抢占,只有链路状态
  2. 优先级为0的也可以参与DIS的选举
  3. DIS可以抢占,此更改会引起新的LSP泛洪
  4. 可以创建和更新伪节点,并且负责生成伪节点的LSP,用来描述这个网络上有哪些网络设备。伪节点是个虚拟节点,不是真实的。在IS-IS中,伪节点用DIS的system ID 和Circuit ID(非零)来标识

ATT:标志位,level-1的路由生成默认路由

路由泄露(路由渗入):将level-2的路由引入进level-1

IS-IS命令:
如何创建IS-IS进程?
isis 1  //进入isis进程1,一个进程内只能有三个不同的区域
is-level level-1 //指定为L1类型的路由器
network-entity 49.0001.0000.0000.0003.00 //net地址
如何宣发isis网络?接口下的isis有什么操作?
int g 0/0/0 //首先进入接口
isis enable 1 //使接口激活isis功能,此处的1与创建时的进程需一致
isis circuit-type p2p  //把网络类型改为p2p,注意对端也要进行更改
isis circuit-level level-2 //指定接口只发送l2的报文
路由泄露怎么搞?
acl 2000 //创建一个acl
rule permit source 想抓入的路由的ip地址 //抓取路由
route-policy 1 permit node 10 //创建一个策略
if-match acl 2000 //应用acl
import-route isis level-2 into level-1 tag 10 filter-policy route-policy 1 
//将策略应用在路由泄露中,把level-2中的这个路由引入level-1

此处是关于IS-IS的一些基础配置命令


如有错误,还请指出,谢谢!

暑期笔记-第六天

加油一起进步!冲鸭!

### OSPF Configuration and Simulation on ENSP Platform In the context of configuring OSPF (Open Shortest Path First) protocol within the ENSP environment, this powerful tool allows users to simulate complex network scenarios without requiring physical hardware. The process involves setting up virtual routers and interfaces that mimic real-world devices accurately. #### Setting Up Virtual Devices To begin with OSPF configuration, one must first create a new project in ENSP where various types of Huawei networking equipment can be added as nodes into the topology diagram[^2]. For instance, adding routers is essential since these will act as OSPF-speaking entities. #### Basic Router Configuration Once all necessary devices are placed onto the canvas, initial configurations such as hostname assignment should take place using commands like `sysname`. This step ensures each device has an identifiable name during troubleshooting sessions or documentation purposes[^3]. ```shell <Huawei> system-view [Huawei] sysname R1 ``` #### Enabling OSPF Process After ensuring basic connectivity between different parts of your simulated network through appropriate interface settings including IP addresses allocation, enabling OSPF becomes crucial: ```shell [R1] ospf 1 router-id 10.0.0.1 ``` This command starts OSPF process ID `1` on router `R1`, assigning it a unique identifier (`router-id`) which helps distinguish among multiple instances running across diverse areas within large networks[^4]. #### Defining Areas and Networks For efficient management and scalability reasons, dividing the entire domain into smaller sections called "areas" proves beneficial when dealing with extensive topologies. By default, every newly created area belongs under Area `0`, also known as backbone area unless specified otherwise while advertising connected subnets via OSPF: ```shell [R1-ospf-1] area 0 [R1-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.0.255 ``` Here, subnet `192.168.1.0/24` gets advertised by OSPF from Area `0`. #### Verifying OSPF Operation Finally, after completing above steps for all involved routers, verifying whether OSPF adjacency establishment occurs correctly along with route learning forms part of validation checks performed inside ENSP console output window: ```shell <R1> display ospf peer brief <R1> display ip routing-table protocol ospf ``` These diagnostic tools provide insights about current status regarding neighbor relationships established over time plus learned routes propagated throughout participating members forming fully functional OSPF-based internetworks[^1]. --related questions-- 1. How does changing OSPF hello intervals impact convergence times? 2. What security measures exist specifically around OSPF authentication mechanisms? 3. Can you explain how multi-area OSPF designs improve performance compared to single-area setups? 4. In what ways do stub areas differ operationally versus standard non-backbone regions?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值