A.题意就是在0和0之间至少有2个1,如果不满足条件,就插入1,计算插入1的个数。
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned ll
#define inf 0x3f3f3f3f
const int mod = 1e9 + 7;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a * b / gcd(a, b);}
using namespace std;
void solve() {
int n;
scanf("%d", &n);
string str;
cin >> str;
int ans = 0;
for (int i = 1; i < n; i++) {
if (str[i] == '0' && str[i - 1] == '0') {
ans += 2;
}
if (i - 2 >= 0 && str[i] == '0' && str[i - 1] == '1' && str[i - 2] == '0') {
ans += 1;
}
}
printf("%d\n", ans);
}
int main(int argc, char** argv) {
int _t;
scanf("%d", &_t);
while (_t--) {
solve();
}
return 0;
}
B.题意大概为:用n构建一个数组p1,p2,…,pn,使数组满足gcd(1⋅p1,2⋅p2,…,n⋅pn)>1的个数。要满足上式,需要满足n*pn为偶数,其实就是求奇数个数的排列乘上偶数个数的排列。
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned ll
#define inf 0x3f3f3f3f
const int mod = 998244353;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a * b / gcd(a, b);}
using namespace std;
void solve() {
int n;
scanf("%d", &n);
if (n % 2 == 1) {
printf("0\n");
return;
}
ll ans = 1;
for (int i = 1; i <= n / 2; i++) {
ans = (ans * i) % mod;
}
ans = (ans * ans) % mod;
printf("%d\n", ans);
}
int main(int argc, char** argv) {
int _t;
scanf("%d", &_t);
while (_t--) {
solve();
}
return 0;
}
C.Shinju and the Lost Permutation
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned ll
#define inf 0x3f3f3f3f
const int mod = 1e9 + 7;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a * b / gcd(a, b);}
using namespace std;
const int N = 1e5 + 10;
int c[N];
void solve() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &c[i]);
}
bool flag = true;
int cnt = 0;
c[n + 1] = c[1];
for (int i = 1; i <= n; i++) {
if (c[i + 1] > c[i] + 1) {
flag = false;
}
if (c[i] == 1) {
cnt++;
}
}
if (flag && cnt == 1) {
printf("YES\n");
}
else {
printf("NO\n");
}
}
int main(int argc, char** argv) {
int _t;
scanf("%d", &_t);
while (_t--) {
solve();
}
return 0;
}