数据结构与算法的基本思维导图
一.线性表
线性表是最常用且最简单的一种数据结构,它是n个数据元素的有限序列。
实现线性表的方式一般有两种,一种是使用数组存储线性表的元素,即用一组连续的存储单元依次存储线性表的数据元素。另一种是使用链表存储线性表的元素,即用一组任意的存储单元存储线性表的数据元素(存储单元可以是连续的,也可以是不连续的)。
1.数组实现
数组是一种大小固定的数据结构,对线性表的所有操作都可以通过数组来实现。虽然数组一旦创建之后,它的大小就无法改变了,但是当数组不能再存储线性表中的新元素时,我们可以创建一个新的大的数组来替换当前数组。这样就可以使用数组实现动态的数据结构。
public void add(int index, int e) {
if (index > size || index < 0) {
System.out.println("位置不合法...");
}
//如果数组已经满了 就扩容
if (size >= oldArray.length) {
// 扩容函数可参考代码1
}
for (int i = size - 1; i >= index; i--) {
oldArray[i + 1] = oldArray[i];
}
//将数组elementData从位置index的所有元素往后移一位
// System.arraycopy(oldArray, index, oldArray, index + 1,size - index);
oldArray[index] = e;
size++;
}
2.链表
链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列节点组成,这些节点不必在内存中相连。每个节点由数据部分Data和链部分Next,Next指向下一个节点,这样当添加或者删除时,只需要改变相关节点的Next的指向,效率很高。
链表的实现还有其它的方式,常见的有循环单链表,双向链表,循环双向链表。 循环单链表 主要是链表的最后一个节点指向第一个节点,整体构成一个链环。 双向链表 主要是节点中包含两个指针部分,一个指向前驱元,一个指向后继元,JDK中LinkedList集合类的实现就是双向链表。** 循环双向链表** 是最后一个节点指向第一个节点。
3.栈和队列
栈和队列也是比较常见的数据结构,它们是比较特殊的线性表,因为对于栈来说,访问、插入和删除元素只能在栈顶进行,对于队列来说,元素只能从队列尾插入,从队列头访问和删除。
public class MyQueue<E> {
private LinkedList<E> list = new LinkedList<>();
// 入队
public void enqueue(E e) {
list.addLast(e);
}
// 出队
public E dequeue() {
return list.removeFirst();
}
}
二. 树与图
树 是由n(n>=1)个有限节点组成一个具有层次关系的集合。它具有以下特点:每个节点有零个或多个子节点;没有父节点的节点称为 根 节点;每一个非根节点有且只有一个 父节点 **;除了根节点外,每个子节点可以分为多个不相交的子树。
public class MyBinSearchTree<E extends Comparable<E>> {
// 根
private TreeNode<E> root;
// 默认构造函数
public MyBinSearchTree() {
}
// 二叉查找树的搜索
public boolean search(E e) {
TreeNode<E> current = root;
while (current != null) {
if (e.compareTo(current.element) < 0) {
current = current.left;
} else if (e.compareTo(current.element) > 0) {
current = current.right;
} else {
return true;
}
}
return false;
}
// 二叉查找树的插入
public boolean insert(E e) {
// 如果之前是空二叉树 插入的元素就作为根节点
if (root == null) {
root = createNewNode(e);
} else {
// 否则就从根节点开始遍历 直到找到合适的父节点
TreeNode<E> parent = null;
TreeNode<E> current = root;
while (current != null) {
if (e.compareTo(current.element) < 0) {
parent = current;
current = current.left;
} else if (e.compareTo(current.element) > 0) {
parent = current;
current = current.right;
} else {
return false;
}
}
// 插入
if (e.compareTo(parent.element) < 0) {
parent.left = createNewNode(e);
} else {
parent.right = createNewNode(e);
}
}
return true;
}
// 创建新的节点
protected TreeNode<E> createNewNode(E e) {
return new TreeNode(e);
}
}
// 二叉树的节点
class TreeNode<E extends Comparable<E>> {
E element;
TreeNode<E> left;
TreeNode<E> right;
public TreeNode(E e) {
element = e;
}
}
2.图
图是一种较线性表和树更为复杂的数据结构,在线性表中,数据元素之间仅有线性关系,在树形结构中,数据元素之间有着明显的层次关系,而在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。图的应用相当广泛,特别是近年来的迅速发展,已经渗入到诸如语言学、逻辑学、物理、化学、电讯工程、计算机科学以及数学的其他分支中。