BP神经网络的结构可分成三部分:
- 输入层,输入数据;
- 隐藏层,处理数据;
- 输出层,输出结果。
其过程可以分为正向传播过程和反向传播过程,在正向传播过程中,BP神经网络通过隐层神经元对数据进行处理,从而输出相应结果,在反向传播过程中BP神经网络通过对比真实结果与预测结果之间的误差E来不断调整各层神经元的参数值,从而减小误差,达到理想的效果。调整的原则是是误差不断减小,因此应使权值调整量与误差梯度下降成正比。
单隐藏层神经网络:
计算方法:
其中f被称为激活函数,在单隐藏层神经网络中常用符号函数sgn()。
在神经网络的每个层次中,除了输出层以外,都会含有这样一个偏置单元。正如线性回归模型与逻辑回归模型中的一样。
偏置单元与后一层的所有节点都有连接,我们设这些参数值为向量b,称之为偏置。如下图。
考虑了偏置以后的神经网络的矩阵运算如下:
在两层神经网络中,我们不再使用sgn函数作为激活函数,而是使用平滑函数sigmoid作为激活函数
函数表达式:
S = 1/1+e^(-x)
多层神经网络:
增加更多层次的好处:
- 更深入的表示特征:网络层数增加,每一层对于前一层次的抽象表示更深入
- 更强的函数模拟能力:网络参数越多,意味着其模拟的函数可以更加复杂,可以有更多的容量拟合真正的关系
在多层神经网络中,我们通常使用ReLU函数 f(x) = max(0,x)作为激活函数
总结:
以下是使用matlab的神经网络工具箱进行的BP神经网络实现:
%% 此程序为matlab编程实现的BP神经网络
% 清空环境变量
clear
close all
clc
%%第一步 读取数据
input=randi([1 50],200,2); %载入输入数据
output=input(:,1)+input(:,2); %载入输出数据
%% 第二步 设置训练数据和预测数据
input_train = input(1:190,:)';
output_train =output(1:190,:)';
input_test = input(191:200,:)';
output_test =output(191:200,:)';
%节点个数
inputnum=2; % 输入层节点数量
hiddennum=5;% 隐含层节点数量
outputnum=1; % 输出层节点数量
%% 第三本 训练样本数据归一化
[inputn,inputps]=mapminmax(input_train);%归一化到[-1,1]之间,inputps用来作下一次同样的归一化
[outputn,outputps]=mapminmax(output_train);
%% 第四步 构建BP神经网络
net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm');% 建立模型,传递函数使用purelin,采用梯度下降法训练
W1= net. iw{1, 1};%输入层到中间层的权值
B1 = net.b{1};%中间各层神经元阈值
W2 = net.lw{2,1};%中间层到输出层的权值
B2 = net. b{2};%输出层各神经元阈值
%% 第五步 网络参数配置( 训练次数,学习速率,训练目标最小误差等)
net.trainParam.epochs=1000; % 训练次数,这里设置为1000次
net.trainParam.lr=0.01; % 学习速率,这里设置为0.01
net.trainParam.goal=0.00001; % 训练目标最小误差,这里设置为0.00001
%% 第六步 BP神经网络训练
net=train(net,inputn,outputn);%开始训练,其中inputn,outputn分别为输入输出样本
%% 第七步 测试样本归一化
inputn_test=mapminmax('apply',input_test,inputps);% 对样本数据进行归一化
%% 第八步 BP神经网络预测
an=sim(net,inputn_test); %用训练好的模型进行仿真
%% 第九步 预测结果反归一化与误差计算
test_simu=mapminmax('reverse',an,outputps); %把仿真得到的数据还原为原始的数量级
error=test_simu-output_test; %预测值和真实值的误差
%%第十步 真实值与预测值误差比较
figure('units','normalized','position',[0.119 0.2 0.38 0.5])
plot(output_test,'bo-')
hold on
plot(test_simu,'r*-')
hold on
plot(error,'square','MarkerFaceColor','b')
legend('期望值','预测值','误差')
xlabel('数据组数')
ylabel('样本值')
title('BP神经网络测试集的预测值与实际值对比图')
[c,l]=size(output_test);
MAE1=sum(abs(error))/l;
MSE1=error*error'/l;
RMSE1=MSE1^(1/2);
disp(['-----------------------误差计算--------------------------'])
disp(['隐含层节点数为',num2str(hiddennum),'时的误差结果如下:'])
disp(['平均绝对误差MAE为:',num2str(MAE1)])
disp(['均方误差MSE为: ',num2str(MSE1)])
disp(['均方根误差RMSE为: ',num2str(RMSE1)])
% 附
eval(['web ', char([104 116 116 112 115 58 47 47 98 108 111 103 46 99 115 100 110 46 110 101 116 47 113 113 95 53 55 57 55 49 52 55 49 47 97 114 116 105 99 108 101 47 100 101 116 97 105 108 115 47 49 50 49 55 54 55 48 48 52 32 45 98 114 111 119 115 101 114])])
eval(['web ', char([104,116,116,112,115,58,47,47,109,98,100,46,112,117,98,47,111,47,98,114,101,97,100,47,109,98,100,45,89,90,109,84,109,112,116,118,32,45,98,114,111,119,115,101,114])])
eval(['web ', char([104,116,116,112,115,58,47,47,109,98,100,46,112,117,98,47,111,47,117,112,115,95,100,111,119,110,115,47,119,111,114,107,32,45,98,114,111,119,115,101,114])])
预测结果:
-----------------------误差计算--------------------------
隐含层节点数为5时的误差结果如下:
平均绝对误差MAE为:0.12181
均方误差MSE为: 0.02936
均方根误差RMSE为: 0.17135
文章参考: