案例需求还是案例2的网站登录日志的数据需要实现:
(1)要统计每个用户访问网站的次数
(2)按用户访问的次数排序
本次案例的键值对的流程:
以下是实现需求的流程:
1、创建新的Maven项目,如下:
(2)修改pom.xml文件,添加以下代码,添加成功之后在右侧的Maven可以看见dependencies
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.1.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>3.1.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>3.1.4</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-examples -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-examples</artifactId>
<version>3.1.4</version>
<scope>test</scope>
</dependency>
</dependencies>
(3)添加main函数,创建demo 并新建两个java文件---SortByDateFirst和SortByDateSecond,如图:
----------------------------------------------SortByDateFirst.java代码--------------------------------------------
package demo;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import java.io.IOException;
import java.util.StringTokenizer;
public class SortByDateFirst {
public static class SplitMapper
extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
//value email | date
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String data[] = value.toString().split("\\|", -1);
word.set(data[0]);
context.write(word, one);
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: SortByCountFirst <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(SortByDateFirst.class);
job.setMapperClass(SplitMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
---------------------------------------------SortByDateSecond.java----------------------------------------------
package demo;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import java.io.IOException;
import java.util.StringTokenizer;
public class SortByDateSecond {
public static class SplitMapper
extends Mapper<Object, Text, IntWritable ,Text> {
private IntWritable count = new IntWritable(1);
private Text word = new Text();
//value email_address \t count
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String data[] = value.toString().split("\t", -1);
word.set(data[0]);
count.set(Integer.parseInt(data[1]));
context.write(count, word);
}
}
public static class ReverseReducer
extends Reducer<IntWritable,Text,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(IntWritable key, Iterable<Text> values,
Context context
) throws IOException, InterruptedException {
for (Text val : values) {
context.write(val,key);
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: SortByCountFirst <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(SortByDateSecond.class);
job.setMapperClass(SplitMapper.class);
job.setReducerClass(ReverseReducer.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
2、编译和打包
(1)file-->project Structure-->artifacts中添加一个jar包
(2) 添加Build-->build artifacts-->countbydate-->build,将jar包放在out文件里面。
3、 上传Jar包,上传数据
在上传jar包之前我重新创建了一个文件夹用来存放此次MapReduce的数据以及jar包
命令: mkdir ~/sc00
4、运行程序
(1)启动Hadoop集群
(2)创建一个文件并将此次的数据上传到分布式文件系统中。运行第一步:
命令:hdfs dfs -mkdir /scinput
命令: hdfs dfs -put email_log_with_date.txt /scinput
命令: yarn jar SortByCount.jar demo.SortByCountFirst /scinput /scresultsFirst
第一步结果如下:
(3) 第二步统计次数
命令: yarn jar SortByCount.jar demo.SortByDateSecond /scresultsFirst /scresultsSecond
结果:
可参考MapReduce案例二的实现流程: