题目描述
给你一个整数数组 coins
表示不同面额的硬币,另给一个整数 amount
表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0
。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
与“零钱兑换问题”类似,读者可以参考零钱兑换问题-优快云博客
示例 1:
输入:amount = 5, coins = [1, 2, 5] 输出:4 解释:有四种方式可以凑成总金额: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1
示例 2:
输入:amount = 3, coins = [2] 输出:0 解释:只用面额 2 的硬币不能凑成总金额 3 。
示例 3:
输入:amount = 10, coins = [10] 输出:1
提示:
1 <= coins.length <= 300
1 <= coins[i] <= 5000
coins
中的所有值 互不相同0 <= amount <= 5000
1. 思路
这道题中,给定总金额 amount 和数组 coins,要求计算金额之和等于 amount 的硬币组合数。其中,coins 的每个元素可以选取多次,且不考虑选取元素的顺序,因此这道题需要计算的是选取硬币的组合数。
可以通过动态规划的方法计算可能的组合数。用 dp[x] 表示金额之和等于 x 的硬币组合数,目标是求 dp[amount]。
动态规划的边界是 dp[0]=1。只有当不选取任何硬币时,金额之和才为 0,因此只有 1 种硬币组合。
对于面额为 coin 的硬币,当 coin ≤ i ≤ amount 时,如果存在一种硬币组合的金额之和等于 i−coin,则在该硬币组合中增加一个面额为 coin 的硬币,即可得到一种金额之和等于 i 的硬币组合。因此需要遍历 coins,对于其中的每一种面额的硬币,更新数组 dp 中的每个大于或等于该面额的元素的值。
由此可以得到动态规划的做法:
- 初始化 dp[0]=1;
- 遍历 coins,对于其中的每个元素 coin,进行如下操作:遍历 i 从 coin 到 amount,将 dp[i−coin] 的值加到 dp[i]。
- 最终得到 dp[amount] 的值即为答案。
上述做法不会重复计算不同的排列。因为外层循环是遍历数组 coins 的值,内层循环是遍历不同的金额之和,在计算 dp[i] 的值时,可以确保金额之和等于 i 的硬币面额的顺序,由于顺序确定,因此不会重复计算不同的排列。
2. 代码
public int change(int amount, int[] coins) {
int[] dp=new int[amount+1];
dp[0]=1;
for(int coin:coins){
for(int i=coin;i<=amount;i++){
if(i-coin>=0)dp[i]+=dp[i-coin];
}
}
return dp[amount];
}