一、线性回归实现(从零开始)
数据生成
import random
import torch
import matplotlib.pyplot as plt
#***************** 1.数据生成函数 *****************
def synthetic_data(w = torch.tensor([2, -3.4]), b = 4.2, num_examples = 1000):
x = torch.normal(0, 1, (num_examples, len(w)))
y = torch.matmul(x, w) + b
y += torch.normal(0 , 0.01, y.shape)
return x, y.reshape(-1, 1)
读取数据集
#***************** 2.读取数据集 *****************
def data_iter(batch_size, features, label):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = torch.tensor(indices[i :min(i + batch_size ,num_examples)])
yield features[batch_indices], label[batch_indices]
def data_iter_test():
batch_size = 10
x , y = synthetic_data();
for x, y in data_iter(batch_size, x, y):
print(x, '\n', y)
data_iter_test()
初始化模型参数
w = torch.normal(0,0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
# w = torch.normal(0,0.01, size=(2,1), requires_grad=True)
w = torch.zeros(size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
定义线性回归模型
def Line_regression(x, w, b):
""" 线性回归模型 """
return torch .matmul(x, w) + b
损失函数
def squared_loss(y_predict, y):
"""" 均方损失函数 """
return (y_predict - y.reshape(y_predict.shape)) ** 2 / 2
优化算法
def sgd(params, lr, batch_size):
"""" 小批量随机梯度下降 """
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
模型训练
lr = 0.02
num_epochs = 4
batch_size = 10
net = Line_regression
loss = squared_loss
true_w = w
true_b = b
def Model_train():
train_x , train_y = synthetic_data();
for epoch in range(num_epochs):
for x, y in data_iter(batch_size, features=train_x, label=train_y):
l = loss(net(x, w, b), y) # 小批量损失
l.sum().backward()
sgd([w, b], lr, batch_size)
with torch.no_grad():
train_l = loss(net(train_x, w ,b), train_y)
print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
print(f'w的估计误差: {(true_w - w)}')
print(f'b的估计误差: {true_b - b}')
Model_train()
二、线性回归实现(调用torch库实现)
获取数据
import numpy as np
import torch
from torch.utils import data
# 数据生成
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
# 获取数据
def load_array(data_arrays, batch_size, is_train = True):
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
print(next(iter(data_iter)))
线性模型建立
Sequential类将多个层串联在⼀起。当给定输⼊数据时, Sequential实例将数据传⼊到第⼀层,然后将第⼀层的输出作为第⼆层的输⼊,以此类推。下面建立一个一层的全连接层,并对参数进行初始化
from torch import nn
net = nn.Sequential(nn.Linear(2,1))
net[0].weight.data.normal_(0, 0.01) #初始权值w
net[0].bias.data.fill_(0) #初始偏置b
定义损失函数
损失函数有很多种,其中常用的有平方损失、均方损失、L1范数、L2范数等
L1Loss:平均绝对误差 (MAE)
NLLLoss:The negative log likelihood loss
PoissonNLLLoss:Negative log likelihood loss with Poisson distribution of target
GaussianNLLLoss:Gaussian negative log likelihood loss
KLDivLoss:The Kullback-Leibler divergence loss
MSELoss: the mean squared error (squared L2 norm)
BCELoss:Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities
loss = nn.MSELoss()
# 优化算法
trainer = torch.optim.SGD(net.parameters(), lr = 0.03)
训练模型
num_epochs = 3
print(f'w:{net[0].weight},b:{net[0].bias}')
for epoch in range(num_epochs):
for x, y in data_iter:
l = loss(net(x), y)
trainer.zero_grad()
l.backward()
trainer.step()
l = loss(net(features), labels)
print(f'epoch{epoch + 1}, loss{l :f}')
print(f'w:{net[0].weight},b:{net[0].bias}')