手写体识别识别:
因为前段日子记录过tensorflow的手写体识别,所以这里就对pytorch的手写体识别学习记录简单的记录以下。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
batch_size = 64
epoch = 5
LR = 0.001
# 获取手写数字的训练集和测试集
train_dataset = datasets.MNIST(root='./res/data',
transform=transforms.ToTensor(), #转换类型
train=True, #如果是True则从training.pt创建数据集,否则来自test.pt。
download=True) #为True时,下载数据集
test_dataset = datasets.MNIST(root='./res/data',
transform=transforms.ToTensor(),
download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True) #为True时,打乱数据集
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True)
# 定义网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
#继承父类,即此处的nn.Module
self.conv1 = nn.Sequential(nn.Conv2d(1, 6, 3, 1, 2), nn.ReLU(),
nn.MaxPool2d(2, 2))
'''
nn.Sequential()表示将一系列操作打包 nn.Conv2d()表示对由多个输入平面组成的输入信号进行二维卷积
nn.ReLU(inplace=True)中,inplace = True时,改变输入状态,否则只产生新的输出
nn.MaxPool2d()对邻域内特征点取最大,减小卷积层参数误差造成估计均值的偏移的误差,更多的保留纹理信息。
'''
self.conv2 = nn.Sequential(nn.Conv2d(6, 16, 5), nn.ReLU(),
nn.MaxPool2d(2, 2))
self.fc1 = nn.Sequential(nn.Linear(16 * 5 * 5, 120),
nn.BatchNorm1d(120), nn.ReLU())
'''
nn.Linear(120, 84)就是制造出一个全连接层的框架,即y=X*W.T + b,对给定一个具体的输入X,就会输出相应的y
nn.BatchNorm1d()实现归一化
'''
self.fc2 = nn.Sequential(nn.Linear(120, 84), nn.BatchNorm1d(84),
nn.ReLU(), nn.Linear(84, 10))
#前向传播
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size()[0], -1)
#x.view(x.size()[0], -1)将前面多维度的tensor展平成一维
x = self.fc1(x)
x = self.fc2(x)
return x
# 训练模型
net = Net()
criterion = nn.CrossEntropyLoss() #损失函数
optimizer = optim.Adam(net.parameters(), lr=LR) #优化器
for epoch in range(epoch):
sum_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad() #将数据梯度归零
outputs = net(inputs) #前向传播预测值
loss = criterion(outputs, labels)
loss.backward() #反向传播
optimizer.step() #根据梯度下降进行数据更新
sum_loss += loss.item() #求总的loss
if i % 100 == 99:
print("[%d, %d] loss is %.03f" %
(epoch + 1, i + 1, sum_loss / 100)) #打印平均的loss
sum_loss = 0.0
# 测试模型与训练模型相同
net.eval()
correct = 0
for data_test in test_loader:
images, labels = data_test
images, labels = Variable(images), Variable(labels)
output_test = net(images)
_, pred = torch.max(output_test, 1)
correct += (pred == labels).sum()
print("Test acc is {}".format(correct.item()/len(test_dataset)))
思路:
1.首先确定输入量、学习率等
2.获取手写体识别的数据集,构成训练集和测试集
3.定义卷积神经网络,本文定义2卷积层、2完全连接层,对应对应的conv、fc
4.再进行前向传播,得到预测的x
5.再定义相应的交叉熵、优化器对数据进行处理
6.最后进行训练和测试,即反向传播不断更新各个数据的值,以达最优解