引言
不多讲解,直接上代码,代码上都有注释,草履虫都能看懂。
本文的程序来自于OpenGL中文教程,这一节内容我调试了好久,一下午才把Bug修复。
总结,当你拿到别人的OpenGL代码时,首先你要看主程序中的外部依赖库和一些头文件你是否具有,然后你需要对着色器的文件地址进行修改,然后就是对资源如图片的文件地址进行修改。
教程原文中的代码是具有Bug的,第一个Bug就是纹理过滤方式的设置,纹理过滤方式不能将放大纹理设置为多级渐进纹理GL_NEAREST_MIPMAP_NEAREST,不然你使用glGetError会报错的。第二个Bug是经典Bug,就是定义矩阵变量时未初始化,即 glm::mat4 model; 这样,教程中所有矩阵定义都没有初始化,这样矩阵的值是未知的,会导致你什么都看不到。记住,只要声明矩阵就要 glm::mat4 model = glm::mat4(1.of); 这样去初始化矩阵。只要是教程中的代码,都需要ctrl+F在编辑器中查找glm::mat4,然后对每一处声明进行修改。
运行效果:
)
代码
注释都在代码中,保姆级注释。
顶点着色器
光源的顶点着色器:
#version 330 core
// 传入局部坐标下的顶点坐标
layout( location = 0 ) in vec3 position;
// 传入变换矩阵
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
// 光源的顶点着色器只需要计算出光源顶点在裁剪空间中的位置即可
gl_Position = projection * view * model * vec4(position, 1.0f);
}
物体的顶点着色器:
// OpenGL版本的声明
#version 330 core
// 顶点数组输入的 位置、法向量、纹理坐标(局部坐标系下)
layout( location = 0 ) in vec3 position;
layout( location = 1 ) in vec3 normal;
layout( location = 2 ) in vec2 texCoords;
// 内存中传入的 模型、观察、投影
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
// 输出顶点的 位置、法向量、纹理坐标(世界坐标下)
out vec3 FragPos;
out vec3 Normal;
out vec2 TexCoords;
void main()
{
// 计算顶点坐标(观察坐标系下)
gl_Position = projection * view * model * vec4(position, 1.0f);
// 计算世界坐标系下的顶点坐标
FragPos = vec3(model * vec4(position, 1.0f));
// 计算世界坐标系下的顶点法向量
// 即对模型矩阵取逆转置 乘以 局部坐标系下的法向量 = 世界坐标系下法向量
// 此处也可以使用正规矩阵对法向量进行变换
Normal = mat3(transpose(inverse(model))) * normal;
// 纹理坐标无需转换
TexCoords = texCoords;
}
片段着色器
光源的片段着色器:
#version 330 core
out vec4 color;
void main()
{
// 光源的片段着色器只需要将其显示为一个很亮的物体即可
color = vec4(1.0f); //设置四维向量的所有元素为 1.0f
}
物体的片段着色器:
// OpenGL版本声明
#version 330 core
// 材质结构体
struct Material {
// 漫反射采样器
sampler2D diffuse;
// 镜面反射采样器
sampler2D specular;
// 高光的发光值
float shininess;
};
// 平行光结构体
struct DirLight {
// 平行光的方向
vec3 direction;
// 环境光颜色值
vec3 ambient;
// 漫反射光颜色值
vec3 diffuse;
// 镜面反射光颜色值
vec3 specular;
};
// 点光源结构体
struct PointLight {
// 点光源的位置
vec3 position;
// 点光源的衰减参数(平行光无限远,只有平行光不衰减)
float constant;
float linear;
float quadratic;
// 颜色值
vec3 ambient;
vec3 diffuse;
vec3 specular;
};
// 聚光结构体
struct SpotLight {
// 聚光的位置
vec3 position;
// 聚光的方向
vec3 direction;
// 聚光的内圆锥角的余弦值
float cutOff;
// 聚光的外圆锥角的余弦值
float outerCutOff;
// 聚光的衰减参数
float constant;
float linear;
float quadratic;
// 颜色值
vec3 ambient;
vec3 diffuse;
vec3 specular;
};
// 使用预处理器指令定义点光源的数目
#define NR_POINT_LIGHTS 4
// 来自vertexShader的输入:位置、向量、纹理坐标
in vec3 FragPos;
in vec3 Normal;
in vec2 TexCoords;
// 输出颜色
out vec4 color;
// 来自程序(内存)的输入:观察者位置、平行光光源、点光源、聚光光源、对象材质
uniform vec3 viewPos;
uniform DirLight dirLight;
uniform PointLight pointLights[NR_POINT_LIGHTS];
uniform SpotLight spotLight;
uniform Material material;
// 方法的声明(点光源和聚光参考距离,需要fragPos参数)
vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir);
vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir);
vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir);
void main()
{
// 标准化法向量
vec3 norm = normalize(Normal);
// 计算观察方向(由片段位置指向观察者位置)
vec3 viewDir = normalize(viewPos - FragPos);
// 计算平行光光照得到的颜色
vec3 result = CalcDirLight(dirLight, norm, viewDir);
// 叠加各个点光源光照得到的颜色
for(int i = 0; i < NR_POINT_LIGHTS; i++)
result += CalcPointLight(pointLights[i], norm, FragPos, viewDir);
// 叠加聚光的颜色值
result += CalcSpotLight(spotLight, norm, FragPos, viewDir);
// 输出最终计算出的颜色值
color = vec4(result, 1.0);
}
// 平行光计算光照颜色
vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir)
{
// 标准化并逆向平行光(得到从片段指向光源的方向向量)
vec3 lightDir = normalize(-light.direction);
// 根据法向量和方向向量计算漫反射系数(最小值为0,负面或垂直)
float diff = max(dot(normal, lightDir), 0.0);
// 根据光入射方向和法向量计算光反射方向
vec3 reflectDir = reflect(-lightDir, normal);
// 计算镜面反射系数pow(观察者方向和反射方向的夹角余弦,发光值)
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// 计算环境光、漫反射光、镜面反射光(颜色值 = 光对应的颜色值 * 对应参数值 * 采样器采样颜色值)
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
// 返回 三种光的颜色值之和
return (ambient + diffuse + specular);
}
// 点光源计算光照颜色(多了一个参数fragPos表示片段的位置)
vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{
// 光源方向向量需要自己计算 = 标准化(光源位置 - 片段位置)
vec3 lightDir = normalize(light.position - fragPos);
// 计算diff漫反射和spec镜面反射的参数
float diff = max(dot(normal, lightDir), 0.0);
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// 计算光源和片段之间的距离
float distance = length(light.position - fragPos);
// 计算衰减系数 = 1 / (光源的衰减常数 + 光源的衰减一次系数 * 距离 + 光源的衰减二次系数 * 距离的平方)
float attenuation = 1.0f / (light.constant + light.linear * distance + light.quadratic * (distance * distance));
// 计算环境光、漫反射光、镜面反射光的颜色值
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
// 使用衰减系数对所有光进行衰减
ambient *= attenuation;
diffuse *= attenuation;
specular *= attenuation;
// 返回所有光颜色值的和
return (ambient + diffuse + specular);
}
// 聚光计算光照颜色
vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{
// 同上计算 光照方向、光照系数、距离、衰减系数
vec3 lightDir = normalize(light.position - fragPos);
float diff = max(dot(normal, lightDir), 0.0);
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
float distance = length(light.position - fragPos);
float attenuation = 1.0f / (light.constant + light.linear * distance + light.quadratic * (distance * distance));
// 计算 光照方向lightDir 与 聚光轴方向light.direction 间夹角的余弦值
float theta = dot(lightDir, normalize(-light.direction));
// 计算 内圆锥余弦值 - 外圆锥余弦值
float epsilon = light.cutOff - light.outerCutOff;
// 计算 圆锥光亮值 = (光照方向和聚光轴方向夹角余弦值 - 外圆锥的余弦值)/ 两圆锥余弦差值
float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0);
// 计算各种光颜色值
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
// 使用衰减系数和锥形光亮值衰减各种光的颜色值
ambient *= attenuation * intensity;
diffuse *= attenuation * intensity;
specular *= attenuation * intensity;
// 返回各种光颜色值之和
return (ambient + diffuse + specular);
}
主程序
#include <iostream>
#include <cmath>
// GLEW
#define GLEW_STATIC
#include <GL/glew.h>
// GLFW
#include <GLFW/glfw3.h>
// 资源加载库
#include <SOIL.h>
// GLM 数学库
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
// 其他头文件
#include "Shader.h"
#include "Camera.h"
// 函数声明(按键、鼠标移动、鼠标滚轮回调函数 和 事件处理函数)
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void do_movement();
// 定义窗口的大小
const GLuint WIDTH = 800, HEIGHT = 600;
// 构造相机 和 鼠标在窗口中的初始位置
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
GLfloat lastX = WIDTH / 2.0;
GLfloat lastY = HEIGHT / 2.0;
// 按键记录数组(记录是否处于按下状态)
bool keys[1024];
// 定义光源位置
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);
// 帧相差时间的记录
GLfloat deltaTime = 0.0f; // Time between current frame and last frame
GLfloat lastFrame = 0.0f; // Time of last frame
// MAIN函数,从这里我们启动应用程序并运行游戏循环
int main()
{
// 初始化 GLFW
glfwInit();
// 设置GLFW使用OpenGL3.3版本和核心模式,设置窗口大小不可改变
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
// 创建GLFW窗口并设置为线程的主上下文
GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr);
glfwMakeContextCurrent(window);
// 对GLFW窗口注册回调函数
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// 设置GLFW的模式为:鼠标不可见
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// 设置glew为更现代的
glewExperimental = GL_TRUE;
// 初始化 GLEW
glewInit();
// 定义视口的位置(视口的左下角相对窗口左下角的位置)和大小
glViewport(0, 0, WIDTH, HEIGHT);
// 开启OpenGL的深度测试功能
glEnable(GL_DEPTH_TEST);
// 编译着色器程序
Shader lightingShader("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Shader\\vertexShader.txt", "C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Shader\\fragmentShader.txt");
Shader lampShader("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Shader\\lightVertexShader.txt", "C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Shader\\lightFragmentShader.txt");
// 顶点数据
GLfloat vertices[] = {
// 位置 // 法向量 // 纹理坐标
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f
};
// 不同箱子的位置
glm::vec3 cubePositions[] = {
glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3(2.0f, 5.0f, -15.0f),
glm::vec3(-1.5f, -2.2f, -2.5f),
glm::vec3(-3.8f, -2.0f, -12.3f),
glm::vec3(2.4f, -0.4f, -3.5f),
glm::vec3(-1.7f, 3.0f, -7.5f),
glm::vec3(1.3f, -2.0f, -2.5f),
glm::vec3(1.5f, 2.0f, -2.5f),
glm::vec3(1.5f, 0.2f, -1.5f),
glm::vec3(-1.3f, 1.0f, -1.5f)
};
// 不同光源的位置
glm::vec3 pointLightPositions[] = {
glm::vec3(0.7f, 0.2f, 2.0f),
glm::vec3(2.3f, -3.3f, -4.0f),
glm::vec3(-4.0f, 2.0f, -12.0f),
glm::vec3(0.0f, 0.0f, -3.0f)
};
// 设置被渲染物体的缓存数据
GLuint VBO, containerVAO;
// 申请显存空间(VBO可以通用,对于光和非光物体,VAO不可通用)
glGenVertexArrays(1, &containerVAO);
glGenBuffers(1, &VBO);
// 绑定缓冲区
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 将绑定GL_ARRAY_BUFFER中的内容 传到 显存中
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// 绑定顶点缓冲数组VAO
glBindVertexArray(containerVAO);
// 设置被旋转物体的数据解析方式
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0); // 启用输入位置0
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glBindVertexArray(0);
// 设置光源的VAO
GLuint lightVAO;
glGenVertexArrays(1, &lightVAO);
glBindVertexArray(lightVAO);
// VBO是物体的顶点数据,光源可以使用,因此VBO可通用
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// VBO已经传输给内存,因此不需再传输。设置数据解析方式(仅需顶点位置)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0); // Note that we skip over the other data in our buffer object (we don't need the normals/textures, only positions).
glEnableVertexAttribArray(0);
glBindVertexArray(0);
// 加载:漫反射、镜面反射、放射光贴图
GLuint diffuseMap, specularMap, emissionMap;
glGenTextures(1, &diffuseMap);
glGenTextures(1, &specularMap);
glGenTextures(1, &emissionMap);
int width, height;
unsigned char* image;
// 加载纹理
image = SOIL_load_image("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Resource\\container2.png", &width, &height, 0, SOIL_LOAD_RGB);
// 绑定纹理贴图到对应纹理上
glBindTexture(GL_TEXTURE_2D, diffuseMap);
// 设置纹理贴图的数据
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
// 生成纹理贴图的多级渐进纹理
glGenerateMipmap(GL_TEXTURE_2D);
// 释放贴图内存
SOIL_free_image_data(image);
// 设置纹理的环绕方式和过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 同上
image = SOIL_load_image("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Resource\\container2_specular.png", &width, &height, 0, SOIL_LOAD_RGB);
glBindTexture(GL_TEXTURE_2D, specularMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D);
SOIL_free_image_data(image);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
// 为 光照物体的着色器 中 材质的纹理采样器 分配纹理单元(由于不变所以写在循环外)
lightingShader.Use();
glUniform1i(glGetUniformLocation(lightingShader.Program, "material.diffuse"), 0);
glUniform1i(glGetUniformLocation(lightingShader.Program, "material.specular"), 1);
// Game loop
while (!glfwWindowShouldClose(window))
{
// 计算帧相差时间
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// 窗口事件检测并处理
glfwPollEvents();
do_movement();
// 清空屏幕和深度缓存
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 使用物体的着色器
lightingShader.Use();
// 设置着色器中观察者的位置为相机位置
GLint viewPosLoc = glGetUniformLocation(lightingShader.Program, "viewPos");
glUniform3f(viewPosLoc, camera.Position.x, camera.Position.y, camera.Position.z);
// 设置高光的发光值为32
glUniform1f(glGetUniformLocation(lightingShader.Program, "material.shininess"), 32.0f);
// 设置平行光的方向、材质本体颜色-环境光、材质本体颜色-漫反射光、材质本体颜色-高光
glUniform3f(glGetUniformLocation(lightingShader.Program, "dirLight.direction"), -0.2f, -1.0f, -0.3f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "dirLight.ambient"), 0.05f, 0.05f, 0.05f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "dirLight.diffuse"), 0.4f, 0.4f, 0.4f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "dirLight.specular"), 0.5f, 0.5f, 0.5f);
// 设置第一个点光源的位置、材质本体颜色-环境光、材质本体颜色-漫反射光、材质本体颜色-高光、距离衰减系数-常数项、距离衰减系数- 一次项、距离衰减系数-二次项
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[0].position"), pointLightPositions[0].x, pointLightPositions[0].y, pointLightPositions[0].z);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[0].ambient"), 0.05f, 0.05f, 0.05f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[0].diffuse"), 0.8f, 0.8f, 0.8f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[0].specular"), 1.0f, 1.0f, 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[0].constant"), 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[0].linear"), 0.09);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[0].quadratic"), 0.032);
// 设置第二个点光源
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[1].position"), pointLightPositions[1].x, pointLightPositions[1].y, pointLightPositions[1].z);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[1].ambient"), 0.05f, 0.05f, 0.05f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[1].diffuse"), 0.8f, 0.8f, 0.8f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[1].specular"), 1.0f, 1.0f, 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[1].constant"), 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[1].linear"), 0.09);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[1].quadratic"), 0.032);
// 设置第三个点光源
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[2].position"), pointLightPositions[2].x, pointLightPositions[2].y, pointLightPositions[2].z);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[2].ambient"), 0.05f, 0.05f, 0.05f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[2].diffuse"), 0.8f, 0.8f, 0.8f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[2].specular"), 1.0f, 1.0f, 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[2].constant"), 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[2].linear"), 0.09);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[2].quadratic"), 0.032);
// 设置第四个点光源
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[3].position"), pointLightPositions[3].x, pointLightPositions[3].y, pointLightPositions[3].z);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[3].ambient"), 0.05f, 0.05f, 0.05f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[3].diffuse"), 0.8f, 0.8f, 0.8f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "pointLights[3].specular"), 1.0f, 1.0f, 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[3].constant"), 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[3].linear"), 0.09);
glUniform1f(glGetUniformLocation(lightingShader.Program, "pointLights[3].quadratic"), 0.032);
// 设置聚光的位置、轴向、材质本体颜色-环境光、材质本体颜色-漫反射光、材质本体颜色-高光、距离衰减系数-常数项、距离衰减系数- 一次项、距离衰减系数-二次项、内圆锥夹角余弦、外圆锥夹角余弦
glUniform3f(glGetUniformLocation(lightingShader.Program, "spotLight.position"), camera.Position.x, camera.Position.y, camera.Position.z);
glUniform3f(glGetUniformLocation(lightingShader.Program, "spotLight.direction"), camera.Front.x, camera.Front.y, camera.Front.z);
glUniform3f(glGetUniformLocation(lightingShader.Program, "spotLight.ambient"), 0.0f, 0.0f, 0.0f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "spotLight.diffuse"), 1.0f, 1.0f, 1.0f);
glUniform3f(glGetUniformLocation(lightingShader.Program, "spotLight.specular"), 1.0f, 1.0f, 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "spotLight.constant"), 1.0f);
glUniform1f(glGetUniformLocation(lightingShader.Program, "spotLight.linear"), 0.09);
glUniform1f(glGetUniformLocation(lightingShader.Program, "spotLight.quadratic"), 0.032);
glUniform1f(glGetUniformLocation(lightingShader.Program, "spotLight.cutOff"), glm::cos(glm::radians(12.5f)));
glUniform1f(glGetUniformLocation(lightingShader.Program, "spotLight.outerCutOff"), glm::cos(glm::radians(15.0f)));
// 创建观察矩阵(创建矩阵就要初始化)
glm::mat4 view = glm::mat4(1.0f);
// 通过摄像机信息获得观察矩阵
view = camera.GetViewMatrix();
// 根据摄像机信息获得投影矩阵
glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)WIDTH / (GLfloat)HEIGHT, 0.1f, 100.0f);
// 获得 模型、观察、投影矩阵在着色器中的位置
GLint modelLoc = glGetUniformLocation(lightingShader.Program, "model");
GLint viewLoc = glGetUniformLocation(lightingShader.Program, "view");
GLint projLoc = glGetUniformLocation(lightingShader.Program, "projection");
// 先设置观察矩阵和投影矩阵(因为模型矩阵跟每个物体有关,需要循环,而渲染一个个物体也要循环,所有干脆后面一起写在循环里)
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
// 激活纹理单元0,绑定漫反射贴图
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, diffuseMap);
// 激活纹理单元0,绑定镜面反射贴图
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, specularMap);
// 循环渲染所有物体
glm::mat4 model;
// 绑定VAO
glBindVertexArray(containerVAO);
for (GLuint i = 0; i < 10; i++)
{
// 根据每个物体的位置计算模型矩阵
model = glm::mat4(1.0f);
model = glm::translate(model, cubePositions[i]);
// 随机设置物体的旋转角度和旋转分量,并据此计算模型矩阵(计算顺序:位移->旋转->缩放)
GLfloat angle = 20.0f * i;
model = glm::rotate(model, angle, glm::vec3(1.0f, 0.3f, 0.5f));
// 传入物体的模型矩阵
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// 绘制物体
glDrawArrays(GL_TRIANGLES, 0, 36);
}
glBindVertexArray(0);
// 使用光源的着色器
lampShader.Use();
// 获得光源着色器中变换矩阵的位置
modelLoc = glGetUniformLocation(lampShader.Program, "model");
viewLoc = glGetUniformLocation(lampShader.Program, "view");
projLoc = glGetUniformLocation(lampShader.Program, "projection");
// 观察矩阵和投影矩阵是由摄像机信息决定的,因此光源也使用上文计算出的同样的观察矩阵和投影矩阵
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
// 绑定光源的VAO(仅包含立方体顶点位置信息)
glBindVertexArray(lightVAO);
for (GLuint i = 0; i < 4; i++)
{
// 只显示点光源,计算点光源的模型矩阵(根据点光源位置和缩放信息)
model = glm::mat4(1.0f);
model = glm::translate(model, pointLightPositions[i]);
model = glm::scale(model, glm::vec3(0.2f));
// 传入模型矩阵
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// 绘制点光源
glDrawArrays(GL_TRIANGLES, 0, 36);
}
glBindVertexArray(0);
// 交换前后缓冲区
glfwSwapBuffers(window);
// 检测OpenGL是否有错误信息(返回0表示正常,非0异常则打印异常编号)
GLint err = glGetError();
if (err)
{
std::cout << err << std::endl;
}
}
// 如果GLFW窗口关闭则释放glfw相应存储空间
glfwTerminate();
return 0;
}
// 按键回调函数(当按下某个键时就会回调,将其在keys数组中记录为true表示已按下)
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)// ESC键关闭窗口结束程序
glfwSetWindowShouldClose(window, GL_TRUE);
if (key >= 0 && key < 1024)// 这个区间表示常用按键
{
if (action == GLFW_PRESS)
keys[key] = true;
else if (action == GLFW_RELEASE) // 如果松开了某个键,则设置其为flase表示未按下
keys[key] = false;
}
}
void do_movement()
{
// 检测是否按下WASD,是则移动摄像机
if (keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime);
if (keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime);
if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// 如果第一次进入窗口,鼠标位置是未知的,我们需要将其重置为上文中的默认位置
bool firstMouse = true;
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if (firstMouse)// 如果第一次进入窗口
{
// 设置鼠标位置为我们定义的默认位置
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
// 移动鼠标时 计算与上次记录的鼠标位置的差距
GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos;
// 更新鼠标位置
lastX = xpos;
lastY = ypos;
// 根据鼠标移动调用摄像机方法,移动摄像机视角
camera.ProcessMouseMovement(xoffset, yoffset);
}
// 当鼠标滚动时,调用摄像机方法传入鼠标滚动的差距值,摄像机会调整视野fov的大小以放大和缩小
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}