RISC-V处理器的设计与实现(一)—— 基本指令集

文章目录

RISC-V处理器的设计与实现(一)—— 基本指令集_Patarw_Li的博客-优快云博客

RISC-V处理器的设计与实现(二)—— CPU框架设计_Patarw_Li的博客-优快云博客

RISC-V处理器的设计与实现(三)—— 上板验证_Patarw_Li的博客-优快云博客

RISC-V处理器设计(四)—— Verilog 代码设计-优快云博客 

RISC-V处理器设计(五)—— 在 RISC-V 处理器上运行 C 程序-优快云博客 


本人小白一枚,在学习FPGA的过程中偶然刷到了tinyriscv这个开源项目,并且自己对计算机体系结构的知识也很感兴趣,所以想参考这个开源项目做一个基于RISC-V指令集的CPU,本项目很多思路和设计都参考了tinyriscv开源项目。

本人自己做的 riscv-cpu 项目仓库(如果觉得对你有帮助请一定一定点个 star!): 

riscv-cpu: 一个基于RISC-V指令集的CPU实现(成功移植到野火征途PRO开发板)


在设计RISC-V处理器之前,我们首先要做的事就是指令集的选取,指令集是一个CPU的基石,要实现CPU 计算和控制功能,就必须定义好一系列与硬件电路相匹配的指令系统。下面是RISC-V官方给出的指令集架构:

因为是第一次做,所以我们选择简单一点的32位基本指令集,也就是RV32I 基本指令集(目前增加了RV32M扩展)

RV32I 基本指令集有6种格式,分别是:

目的类型
用于寄存器-寄存器操作R 类型指令
用于短立即数和访存 load 操作I 型指令
用于访存 store 操作S 型指令
用于条件跳转操作SB 类型指令
用于长立即数U 型指令
用于无条件跳转UJ 型指令

RV32I 基本指令集有47条指令,如下图:

本项目目前除了 FENCE 指令其他的都已经实现,下面介绍了一下这些指令的用法,这里给大家先推荐一个好用的工具叫Ripes,可以到上面运行riscv汇编指令,并且可以把对应的指令转成二进制机器码,方便我们后面的仿真:

Releases · mortbopet/Ripes · GitHub

下面我们开始指令的介绍。

RV32I 基本指令集

1. LUI 

语法:lui rd, imm,作用是将立即数imm逻辑左移12位,结果写入rd寄存器(立即数是无符号数)。

我们在ripes运行如下例子来看看结果:

lui x1,1
lui x2,255

如下是运行结果,可以看到寄存器内的数值都是立即数左移12位的结果(16进制): 

2. AUIPC 

语法:auipc rd, imm,作用是将立即数imm逻辑左移12位,然后加上当前指令PC的值,结果写入rd寄存器(立即数是无符号数)。

我们可以通过将立即数的值设置为0来计算PC的值:

auipc x1,0
auipc x2,0
auipc x3,0
auipc x4,4

运行结果如下: 

 

3. JAL(无条件跳转指令)

语法:jal rd, imm,作用是将PC的值加上4,结果写入rd寄存器,rd默认为x1,同时将PC的值设置为当前jal指令地址PC加上符号位拓展的imm。 

我们可以通过这个指令来跳到指定的指令执行: 

auipc x2,0
auipc x3,0
auipc x4,4
jal x1,-12

 可以看到上述指令会一直循环执行。

4. JALR(无条件跳转指令,寄存器相对寻址)

语法:jalr rd, rs1,imm,作用是将PC的值加上4,结果写入rd寄存器,rd默认为x1,同时将当前PC值设置为寄存器rs1的值加上符号位拓展的imm。

功能和JAL指令一样,不过计算跳转地址的方式不一样,JAL指令跳转地址为PC+imm,而JALR指令跳转地址为寄存器rs1内容+imm: 

addi x1,x0,8
auipc x2,0
auipc x3,0
auipc x4,4
jalr x5,x1,4

因为第4条指令的地址为12,寄存器x1的内容8+立即数4等于12,所以可以看到程序跳转到第四条指令执行:

5. BEQ(分支跳转指令,相等时跳转)

语法:beq rs1, rs2, imm,作用是如果rs1的值等于rs2的值,则将PC设置为符号当前指令beq地址+符号位拓展的立即数imm。 

addi x1,x0,1
addi x2,x0,2
add x1,x1,x1
beq x1,x2,-4

 执行结果如下,可以看到第三条add指令执行了两次:

 

6. BNE(分支跳转指令,不等时跳转)

语法:bne rs1, rs2, imm,作用是如果rs1的值不等于rs2的值,则将PC设置为符号当前指令bne地址+符号位拓展的立即数imm。 

addi x1,x0,1
addi x2,x0,8
add x1,x1,x1
bne x1,x2,-4

 执行结果如下,可以看到第三条add指令执行了三次:

7. BLT(分支跳转指令,小于时跳转)

语法:blt rs1, rs2, imm,作用是如果rs1的值小于rs2的值,则将PC设置为符号当前指令blt地址+符号位拓展的立即数imm。

addi x1,x0,1
addi x2,x0,8
add x1,x1,x1
blt x1,x2,-4

 执行结果如下,可以看到第三条add指令执行了三次:

8. BGE(分支跳转指令,大于等于时跳转)

语法:bge rs1, rs2, imm,作用是如果rs1的值大于或等于rs2的值,则将PC设置为符号当前指令bge地址+符号位拓展的立即数imm。

addi x1,x0,10
addi x2,x0,8
addi x1,x1,-1
bge x1,x2,-4

执行结果如下,可以看到第三条addi指令执行了三次:

9. BLTU(分支跳转指令,无符号数比较,小于时跳转)

语法:bltu rs1, rs2, imm,作用是如果rs1的值小于rs2的值(rs1和rs2为无符号数),则将PC设置为符号当前指令bltu地址+符号位拓展的imm。 

10. BGEU(分支跳转指令,无符号数比较,大于或等于时跳转)

语法:bgeu rs1, rs2, imm,作用是如果rs1的值大于或等于rs2的值(rs1和rs2为无符号数),则将PC设置为符号当前指令bgeu地址+符号位拓展的imm。  

BLTU、BGEU和BLT、BGE的区别在于一个是无符号数比较,一个是有符号数比较。

如下两个示例,执行结果是不一样的:

addi x1,x0,-1
addi x2,x0,8
addi x1,x1,-1
bge x1,x2,-4
addi x1,x0,-1
addi x2,x0,8
addi x1,x1,-1
bgeu x1,x2,-4

11. LB(访存指令,一字节)

语法:lb rd, imm, rs1,作用是从处读rs1加上imm的地址取一个字节的内容,并将该内容经符号位扩展后写入rd寄存器。

addi x1,x0,-1
lb x3,1,x1

执行结果如下,可以看到memory内第一个字节的数据被符号位扩展后送入寄存器x3:

 

12. LH(访存指令,两字节)

语法:lh rd, imm, rs1,作用是从处读rs1加上imm的地址取两个字节的内容,并将该内容经符号位扩展后写入rd寄存器。

addi x1,x0,0
lh x3,4,x1

执行结果如下,可以看到memory内地址4的两个字节数据被符号位拓展后送入x3:

13. LW(访存指令,四字节)

语法:lw rd, imm, rs1,作用是从处读rs1加上imm的地址取四个字节的内容,并将该内容写入rd寄存器(因为四字节位数和寄存器位数相同,所以无需符号位拓展)。

addi x1,x0,0
lw x3,4,x1

 执行结果如下,可以看到memory内地址4的四个字节数据被送入x3:

 

14. LBU(访存指令,一字节,无需符号位拓展)

语法:lbu rd, imm, rs1,作用是从处读rs1加上imm的地址取一个字节的内容,并将该内容经高位补0后写入rd寄存器。

15. LHU(访存指令,两字节,无需符号位拓展)

语法:lhu rd, imm, rs1,作用是从处读rs1加上imm的地址取两个字节的内容,并将该内容经高位补0后写入rd寄存器。

16. SB(访存指令,一字节)

语法:sb rs2, imm, rs1,作用是将rs2的低八位写入rs1加上imm的地址处。

addi x1,x0,-1
sb x1,0,x0

执行结果如下: 

17. SH(访存指令,两字节)

语法:sh rs2, imm, rs1,作用是将rs2的低16位写入rs1加上imm的地址处。 

addi x1,x0,-1
sh x1,0,x0

执行结果如下: 

 

18. SW(访存指令,四字节) 

语法:sw rs2, imm, rs1,作用是将rs2写入rs1加上imm的地址处。 

addi x1,x0,-1
sw x1,0,x0

19. ADDI

语法:addi rd, rs1, imm,作用是将符号扩展的立即数imm的值加上rs1的值,结果写入rd寄存器,忽略算术溢出。

addi x1,x0,-1
addi x2,x1,2

执行结果如下: 

20. SLTI(小于置1)

语法:slti rd, rs1, imm,作用是将符号扩展的立即数imm的值与rs1的值比较(有符号数比较),如果rs1 < imm,则向rd寄存器写1,否则写0。

addi x1,x0,-1
slti x2,x1,2

执行结果如下:  

21. SLTIU(小于置1,无符号比较)

语法:sltiu rd, rs1, imm,作用是将符号位拓展的立即数imm作为作为无符号数与rs1的值比较(无符号数比较),如果rs1 < imm,则向rd寄存器写1,否则写0。(一定要将上面的话理解清楚,不然设计的时候会出问题)

addi x1,x0,-1
sltiu x2,x1,2

执行结果如下,可以看到x2结果变为了0:  

22. XORI(异或)

语法:xori rd, rs1, imm,作用是将rs1与符号位扩展的imm按位异或,结果写入rd寄存器。

23. ORI

语法:ori rd, rs1, imm,作用是将rs1与符号位扩展的imm按位或,结果写入rd寄存器。

24. ANDI

语法:andi rd, rs1, imm,作用是将rs1与符号位扩展的imm按位与,结果写入rd寄存器。

25. SLLI(逻辑左移)

语法:slli rd, rs1, shamt,作用是将rs1左移shamt位,空出的位补0,结果写入rd寄存器。

26. SRLI(逻辑右移)

语法:srli rd, rs1, shamt,作用是将rs1右移shamt位,空出的位补0,结果写入rd寄存器。

27. SRAI(算术右移)

语法:srai rd, rs1, shamt,作用是将rs1右移shamt位,空出的位用rs1的最高位补充,结果写入rd寄存器。

28. ADD

语法:add rd, rs1, rs2,作用是将rs1寄存器的值加上rs2寄存器的值,然后将结果写入rd寄存器里,忽略算术溢出。

29. SUB

语法:sub rd, rs1, rs2,作用是将rs1寄存器的值减去rs2寄存器的值,然后将结果写入rd寄存器里,忽略算术溢出。

30. SLL

语法:sll rd, rs1, rs2,作用是将rs1左移rs2位(低5位有效),空出的位补0,结果写入rd寄存器。

31. SLT

语法:slt rd, rs1, rs2,作用是将rs1的值与rs2的值比较(有符号数比较),如果rs1的值更小,则向rd寄存器写1,否则写0。

32. SLTU

语法:sltu rd, rs1, rs2,作用是将rs1的值与rs2的值比较(无符号数比较),如果rs1的值更小,则向rd寄存器写1,否则写0。

33. XOR

语法:xor rd, rs1, rs2,作用是将rs1与rs2按位异或,结果写入rd寄存器。

34. SRL

语法:srl rd, rs1, rs2,作用是将rs1右移rs2位(低5位有效),空出的位补0,结果写入rd寄存器。

35. SRA

语法:sra rd, rs1, rs2,作用是将rs1右移rs2位(低5位有效),空出的位用rs1的最高位补充,结果写入rd寄存器。

36. OR

语法:or rd, rs1, rs2,作用是将rs1与rs2按位或,结果写入rd寄存器。

37. AND

语法:and rd, rs1, rs2,作用是将rs1与rs2按位与,结果写入rd寄存器。

RV32M 扩展指令集

1. MUL

语法:mul rd, rs1, rs2,作用是将rs1与rs2相乘,结果的低32位写入rd寄存器。

2. MULH

语法:mulh rd, rs1, rs2,作用是将rs1与rs2相乘,结果的高32位写入rd寄存器。

3. MULHSU

语法:mulhsu rd, rs1, rs2,作用是将rs1与rs2相乘,其中rs1为有符号数,rs2为无符号数,结果的高32位写入rd寄存器。

4. MULHU

语法:mulhu rd, rs1, rs2,作用是将rs1与rs2相乘,其中rs1、rs2均为无符号数,结果的高32位写入rd寄存器。

5. DIV

语法:div rd, rs1, rs2,作用是将rs1与rs2相除,结果的写入rd寄存器。

6. DIVU

语法:divu rd, rs1, rs2,作用是将rs1与rs2相除,其中rs1、rs2均为无符号数,结果的写入rd寄存器。

7. REM

语法:rem rd, rs1, rs2,作用是将rs1与rs2相除,结果的余数写入rd寄存器。

8. REMU

语法:remu rd, rs1, rs2,作用是将rs1与rs2相除,其中rs1、rs2均为无符号数,结果的余数写入rd寄存器。

以上就是目前所用到的指令了,之后如果添加新的指令会在这里更新。

之后我会还会出新文章更新具体设计部分的内容,大家看了如果觉得有帮助请点个小小的赞吧~

如果遇到问题也欢迎加群 892873718 交流~

<think>好的,用户遇到了Git合并时本地更改会被覆盖的问题,需要解决方案。根据之前的引用资料,解决方法主要有commit、stash和revert三种。首先,我得确认用户的具体情况,比如他们的本地更改是否已经完成,是否需要保留,或者是否可以丢弃。用户可能不太清楚这三种方法的适用场景,需要详细解释每个选项的步骤和优缺点。比如,commit适用于需要保留更改的情况,stash适合临时保存以便后续恢复,而revert则是直接撤销更改,适用于不需要保留的情况。需要结构清晰,分点说明,每个方法都给出操作步骤和适用场景,帮助用户理解哪种情况最适合他们。还要注意使用中文,避免技术术语过于复杂,让用户容易理解。同时,生成相关问题,可能涉及如何恢复stash的内容,或者如何避免频繁冲突等,扩展用户的知识点。另外,要确保LaTeX格式正确,但在这个问题中可能用不上数学公式,所以主要关注代码块和引用标识。检查引用是否正确,比如引用[^1]和[^2]的来源是否相关,用户提供的引用内容是否准确对应解决方案。 最后,确保回答真实可靠,操作步骤准确无误,避免误导用户。可能还需要提醒用户根据具体情况选择方法,比如如果有未完成的实验性代码,stash可能是更好的选择,而如果是确定要保留的修改,则应该commit。</think>要解决Git合并时本地更改被覆盖的问题,可根据不同场景选择以下三种方法: ### 、提交本地更改(commit) **适用场景**:当本地更改已测试通过且需要保留到版本历史中。 **操作步骤**: 1. 将改动添加到暂存区: ```bash git add . # 添加所有文件 # 或指定文件 git add file1.txt file2.py ``` 2. 提交更改并添加描述: ```bash git commit -m "完成用户登录模块优化" ``` 3. 执行合并操作: ```bash git merge origin/main ``` **优点**:保留完整的开发记录,便于后续追溯[^1]。 ### 二、暂存更改(stash) **适用场景**:需要临时保存未完成的修改(如调试代码),优先处理合并操作。 **操作步骤**: 1. 保存当前工作状态: ```bash git stash # 可选添加备注 git stash save "用户登录模块调试代码" ``` 2. 查看暂存记录列表: ```bash git stash list ``` 3. 合并远程分支: ```bash git merge origin/main ``` 4. 恢复暂存内容: ```bash git stash pop # 恢复并删除最近次暂存 # 或指定特定暂存 git stash apply stash@{1} ``` **优点**:保持工作目录整洁,特别适合处理紧急合并任务[^2]。 ### 三、撤销本地更改(revert) **适用场景**:本地修改可丢弃(如实验性代码或错误修改)。 **操作步骤**: 1. 撤销所有未提交的修改: ```bash git checkout -- . # 全部文件 # 或指定文件 git checkout -- file1.txt ``` 2. 执行合并操作: ```bash git merge origin/main ``` **风险提示**:此操作不可逆,需确认文件无需保留。 --- ### 对比决策表 | 方法 | 保留记录 | 可恢复性 | 适用阶段 | |---------|----------|----------|------------------| | commit | ✅ | ✅ | 功能开发完成时 | | stash | ❌ | ✅ | 开发中途临时切换 | | revert | ❌ | ❌ | 放弃无效修改 | ### 扩展应用场景 - 当存在多个暂存时,可用`git stash list`查看记录,通过`git stash apply stash@{n}`精准恢复 - 合并后出现冲突时,可使用`git mergetool`可视化工具解决冲突 - 长期分支开发推荐使用`git rebase`保持提交历史线性
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值