载波频率成分法
载波频率成分法 (carrier frequency component method, CFCM) 是一种永磁同步电机无位置传感器算法。此算法的核心之处,在于采用了了三相三角载波调制出电机所需要的三相电压。经过双重傅里叶理论、贝塞尔函数等数学工具处理分析三相电压,可得调制出的三相电压中的载波频率成分,蕴藏着转子位置信息。最终可将此算法表述为:该算法等效在静止轴系注入一个旋转矢量(可借鉴旋转高频注入法的思想),幅值为 3 U d c π \frac{3U_{dc}}{\pi} π3Udc,频率为载波频率 ω c \omega _c ωc。
此后,在下图所示的坐标轴系中,处理得到 γ δ , α β \gamma \delta , \alpha \beta γδ,αβ轴系上的载波频率电流信号。
上述电流信号,表达式如下;
[
i
α
c
i
β
c
]
=
[
1
2
(
1
L
d
+
1
L
q
)
3
U
d
c
π
ω
c
sin
ω
c
t
+
1
2
(
1
L
d
−
1
L
q
)
3
U
d
c
π
ω
c
sin
(
ω
c
t
−
2
θ
e
)
−
1
2
(
1
L
d
+
1
L
q
)
3
U
d
c
π
ω
c
cos
ω
c
t
+
1
2
(
1
L
d
−
1
L
q
)
3
U
d
c
π
ω
c
cos
(
2
θ
e
−
ω
c
t
)
]
\left[ \begin{array}{c} i_{\alpha c}\\ i_{\beta c}\\ \end{array} \right] =\left[ \begin{array}{c} \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) \frac{\frac{3U_{dc}}{\pi}}{\omega _c}\sin \omega _ct+\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{\frac{3U_{dc}}{\pi}}{\omega _c}\sin \left( \omega _ct-2\theta _e \right)\\ -\frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) \frac{\frac{3U_{dc}}{\pi}}{\omega _c}\cos \omega _ct+\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{\frac{3U_{dc}}{\pi}}{\omega _c}\cos \left( 2\theta _e-\omega _ct \right)\\ \end{array} \right]
[iαciβc]=⎣⎡21(Ld1+Lq1)ωcπ3Udcsinωct+21(Ld1−Lq1)ωcπ3Udcsin(ωct−2θe)−21(Ld1+Lq1)ωcπ3Udccosωct+21(Ld1−Lq1)ωcπ3Udccos(2θe−ωct)⎦⎤
[
i
γ
c
i
δ
c
]
=
[
1
2
(
1
L
d
+
1
L
q
)
3
U
d
c
π
ω
c
sin
(
ω
c
t
−
π
4
)
+
1
2
(
1
L
d
−
1
L
q
)
3
U
d
c
π
ω
c
sin
(
ω
c
t
−
2
θ
e
+
π
4
)
−
1
2
(
1
L
d
+
1
L
q
)
3
U
d
c
π
ω
c
cos
(
ω
c
t
−
π
4
)
+
1
2
(
1
L
d
−
1
L
q
)
3
U
d
c
π
ω
c
cos
(
2
θ
e
−
ω
c
t
−
π
4
)
]
\left[ \begin{array}{c} i_{\gamma c}\\ i_{\delta c}\\ \end{array} \right] =\left[ \begin{array}{c} \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) \frac{\frac{3U_{dc}}{\pi}}{\omega _c}\sin \left( \omega _ct-\frac{\pi}{4} \right) +\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{\frac{3U_{dc}}{\pi}}{\omega _c}\sin \left( \omega _ct-2\theta _e+\frac{\pi}{4} \right)\\ -\frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) \frac{\frac{3U_{dc}}{\pi}}{\omega _c}\cos \left( \omega _ct-\frac{\pi}{4} \right) +\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{\frac{3U_{dc}}{\pi}}{\omega _c}\cos \left( 2\theta _e-\omega _ct-\frac{\pi}{4} \right)\\ \end{array} \right]
[iγciδc]=⎣⎡21(Ld1+Lq1)ωcπ3Udcsin(ωct−4π)+21(Ld1−Lq1)ωcπ3Udcsin(ωct−2θe+4π)−21(Ld1+Lq1)ωcπ3Udccos(ωct−4π)+21(Ld1−Lq1)ωcπ3Udccos(2θe−ωct−4π)⎦⎤
然后根据余弦定理(此处存疑,没搞明白通过怎样的数学处理获得了峰值表达式),可得到每个轴上的峰值表达式:
∣
i
α
c
∣
p
e
a
k
=
3
U
d
c
π
ω
c
(
L
0
2
−
L
1
2
)
L
0
2
+
L
1
2
+
2
L
0
L
1
cos
(
2
θ
e
)
∣
i
β
c
∣
p
e
a
k
=
3
U
d
c
π
ω
c
(
L
0
2
−
L
1
2
)
L
0
2
+
L
1
2
−
2
L
0
L
1
cos
(
2
θ
e
)
\left| i_{\alpha c} \right|_{peak}=\frac{3U_{dc}}{\pi \omega _c\left( L_{0}^{2}-L_{1}^{2} \right)}\sqrt{L_{0}^{2}+L_{1}^{2}+2L_0L_1\cos \left( 2\theta _e \right)} \\ \left| i_{\beta c} \right|_{peak}=\frac{3U_{dc}}{\pi \omega _c\left( L_{0}^{2}-L_{1}^{2} \right)}\sqrt{L_{0}^{2}+L_{1}^{2}-2L_0L_1\cos \left( 2\theta _e \right)}
∣iαc∣peak=πωc(L02−L12)3UdcL02+L12+2L0L1cos(2θe)∣iβc∣peak=πωc(L02−L12)3UdcL02+L12−2L0L1cos(2θe)
∣
i
γ
c
∣
p
e
a
k
=
3
U
d
c
π
ω
c
(
L
0
2
−
L
1
2
)
L
0
2
+
L
1
2
+
2
L
0
L
1
sin
(
2
θ
e
)
∣
i
δ
c
∣
p
e
a
k
=
3
U
d
c
π
ω
c
(
L
0
2
−
L
1
2
)
L
0
2
+
L
1
2
−
2
L
0
L
1
sin
(
2
θ
e
)
\left| i_{\gamma c} \right|_{peak}=\frac{3U_{dc}}{\pi \omega _c\left( L_{0}^{2}-L_{1}^{2} \right)}\sqrt{L_{0}^{2}+L_{1}^{2}+2L_0L_1\sin \left( 2\theta _e \right)} \\ \left| i_{\delta c} \right|_{peak}=\frac{3U_{dc}}{\pi \omega _c\left( L_{0}^{2}-L_{1}^{2} \right)}\sqrt{L_{0}^{2}+L_{1}^{2}-2L_0L_1\sin \left( 2\theta _e \right)}
∣iγc∣peak=πωc(L02−L12)3UdcL02+L12+2L0L1sin(2θe)∣iδc∣peak=πωc(L02−L12)3UdcL02+L12−2L0L1sin(2θe)
然后用下式估计出转子位置
θ
^
e
=
1
2
a
r
c
tan
(
∣
i
γ
c
∣
p
e
a
k
2
−
∣
i
δ
c
∣
p
e
a
k
2
∣
i
α
c
∣
p
e
a
k
2
−
∣
i
β
c
∣
p
e
a
k
2
)
\hat{\theta}_e=\frac{1}{2}\mathrm{arc}\tan \left( \frac{\left| i_{\gamma c} \right|_{peak}^{2}-\left| i_{\delta c} \right|_{peak}^{2}}{\left| i_{\alpha c} \right|_{peak}^{2}-\left| i_{\beta c} \right|_{peak}^{2}} \right)
θ^e=21arctan(∣iαc∣peak2−∣iβc∣peak2∣iγc∣peak2−∣iδc∣peak2)
该理论是一种获得转子位置信息的理论,属于永磁同步电机无位置传感器理论的一部分。
方便大家考证理解(包括但不限于双重傅里叶理论、贝塞尔函数、三相三角载波、载波频率成分法后续的极性判断等知识点),以下将给出参考文献。关于坐标间的相互转换公式推导,可参考永磁同步电机电压方程在静止坐标系与运动坐标系间的相互转换。
参考文献
[1] Pulse Width Modulation for Power Converters Principles and Practice, D. Grahame Holmes, Thomas A. Lipo, IEEE Press
[2] 载波频率成分法估算IPMSM转子位置的误差分析, 于艳君,电工技术学报,2010
[3] 基于载波频率成份法的永磁同步电机无位置传感器控制研究, 于艳君,哈尔滨工业大学博士论文,2009
[4] Mengesha Mamo, K. Ide, M. Sawamura and J. Oyama, “Novel rotor position extraction based on carrier frequency component method (CFCM) using two reference frames for IPM drives,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 508-514, Apr. 2005.
[5] https://blog.youkuaiyun.com/qq_50632468/article/details/116497387(不同轴系间的公式推导)