顺序表刷题

顺序表刷题!!!

空间复杂度不写默认O(1),满不满足题目需要你自己去看!!!

消失得数字

解法一:快速排序+查找下标不匹配得数字---时间复杂度O(n*logn+n)

解法二:建立映射表,初始化为-1,将原数组得元素分别映射到下标数字对应的位置,最终-1所在得下标对应的数字就是消失的数字---时间复杂度O(n+n(原数组和新数组均遍历一次)),空间复杂度O(n)

解法三:异或

//异或结论:两个相同的异或为0,0与某数异或为某数
//有一个特性就是,异或同一个数字两次则这个数为0
//如果异或了这个数字一次那么保留这个数字

给定val,初始化为0,与原数组异或一次,与0-n得数字异或一次,必然有一个数字被异或了一次

时间复杂度O(n+n)

解法四:等差数列求和,已知0-n,等差数列求和,减去原数组,剩下某个元素,就是消失的数字

时间复杂度O(N)

移除元素

解法一:挨个挨个删除,挨个挨个往前挪动,大众思路---时间复杂度O(n方)

解法二:创建新数组,映射过去,---时间复杂度O(n),空间复杂度O(n)

解法三:双指针,一个去找要删除的数据,一个在存储数据,同时要--数组长度,时间复杂度O(n)

旋转数组

解法1:建立映射表,根据k的值,从n-k左右的位置,放到映射表的前面,其他的放到映射表的后面,时间复杂度O(n),空间复杂度O(n)

解法2:将最后一个元素放到最前面,最前面一个一个往后移动,移动k次就是n*k,时间复杂度o(n*k)

解法3:

删除有序数组中的重复项

升序数组。

解法1:建表,一个指针指向原数组,一个指针指向新数组,原数组数字==新数组数字,原数组搜寻。时间复杂度O(n),空间复杂度O(n)

解法2:双指针,一个指针寻找不同的数字,更换不同的数字,一个指针存储数字,直接往前面覆盖(类似移除元素那道题)

解法3:给定cur和next两个指针,这两个指针的作用是找一段相等的区间,再给定一个指针dst,用来存放重复的数字,当cur和next的值不相等时,表明找到了不重复的数字,把某一个值给dst存下来。时间复杂度O(n)

合并两个有序数组

解法一:短的合并到长的上面,进行排序。时间复杂度O(n+n*logn)

解法二:归并排序:新建数组,给定m和n两个数组两个指针,比较两个指针大小,依次放到新数组位置。时间复杂度O(M+N),空间复杂度O(m+n)

解法三(优化解法二):既然是非递减数组,是有序的,解法二是从小的开始走,那如果从大的开始走呢?倒着走呢?

时间复杂度O(m+n)

### LeetCode推荐顺序与策略 LeetCode的顺序和策略对于提升编程能力和算法思维至关重要。以下是根据高频考点、经典问分类以及解技巧总结出的一套推荐顺序与策略[^2]。 #### 1. 基础知识巩固 在开始之前,建议先熟悉常见的数据结构(如数组、链表、栈、队列、哈希表、二叉树等)和基本算法思想(如递归、分治、贪心、动态规划等)。这是解决复杂问的基础。 #### 2. 分类与顺序 以下是一个按照难度和重要性排序的分类: - **基础型**:从简单的目入手,熟悉平台操作和基本语法。 - 数组操作(如两数之和、移动零) - 字符串处理(如反转字符串、有效的括号) - 链表基础(如反转链表[^4]) - **中等型**: - 滑动窗口(最长无重复子串[^2]) - 二叉树遍历(前序、中序、后序遍历) - 动态规划入门(打家劫舍、爬楼梯[^3]) - **高级型**: - 回溯算法(排列组合、子集问[^2]) - 图论(并查集、拓扑排序) - 堆的应用(Top K问) - 设计(LRU缓存[^2]) #### 3. 解策略 - **理解问**:仔细阅读目描述,明确输入输出要求。 - **选择方法**:根据问特点选择合适的算法思想,例如动态规划适用于具有最优子结构和重复子问的问。 - **实现代码**:编写清晰、高效的代码,并注意边界条件。 - **优化性能**:尝试优化时间和空间复杂度,例如原地修改数组以满足O(1)空间复杂度要求[^5]。 #### 4. 练习方式 - **Recursion**:通过递归练习解决问的能力。 - **Top-Down**:使用记忆化搜索减少重复计算。 - **Bottom-Up**:从最简单的情况出发,逐步构建解决方案[^1]。 ```python # 示例:动态规划解决打家劫舍问 class Solution: def rob(self, nums: List[int]) -> int: if not nums: return 0 n = len(nums) if n == 1: return nums[0] dp = [0] * n dp[0] = nums[0] dp[1] = max(nums[0], nums[1]) for i in range(2, n): dp[i] = max(dp[i-1], dp[i-2] + nums[i]) # 状态转移方程 return dp[-1] ``` #### 5. 高频考点回顾 针对高频考点进行专项练习是提高效率的关键。例如: - 滑动窗口:用于解决子数组或子串问。 - 二叉树序列化/反序列化:掌握树的构造与遍历。 - 并查集:解决连通性问。 - LRU缓存设计:结合哈希表和双向链表实现。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值