自修不定积分:吴传生《经济数学 微积分》第四版 总习题五(一)

前言

该章节的小节题目比较简单,但综合题目(总习题五)有一定难度。作为自修不定积分的学习笔记,此篇博文解析习题步骤,记录学习成果。

另外,本人只借助此书学习微积分相关知识,不希求学习经济数学专业内容,因此只做了第一大题,第二大题没有做。

录入匆忙,难免有纰漏,敬请指正。

正文开始

1、求下列不定积分(a,b为常数)
( 1 ) ∫ d x e x + e − x = ∫ e x d x ( e x ) 2 + 1 = ∫ d e x ( e x ) 2 + 1 = ( ∫ d u u 2 + 1 ) u = e x = arctan ⁡ u + C = arctan ⁡ e x + C \begin{aligned} (1)\int\frac{\mathrm{d}x}{\mathrm{e}^x+\mathrm{e}^{-x}} &=\int\frac{\mathrm{e}^x\mathrm{d}x}{\left(\mathrm{e}^x\right)^2+1}\\ &=\int\frac{\mathrm{d}\mathrm{e}^x}{\left(\mathrm{e}^x\right)^2+1}\\ &=\left(\int\frac{\mathrm{d}u}{u^2+1}\right)_{u=\mathrm{e}^x}\\ &=\arctan{u}+C\\ &=\arctan{\mathrm{e}^x}+C \end{aligned} (1)ex+exdx=(ex)2+1exdx=(ex)2+1dex=(u2+1du)u=ex=arctanu+C=arctanex+C

( 2 ) ∫ 1 + x ( 1 − x ) 3 d x = ∫ 2 − 1 + x ( 1 − x ) 3 d x = ( ∫ 2 + u − u 3 d u ) u = x − 1 = − 2 ∫ u − 3 d u − ∫ u − 2 d u = u − 2 − u − 1 + C = ( x − 1 ) − 2 + ( x − 1 ) − 1 + C \begin{aligned} (2)\int\frac{1+x}{(1-x)^3}\mathrm{d}x &=\int\frac{2-1+x}{(1-x)^3}\mathrm{d}x\\ &=\left(\int\frac{2+u}{-u^3}\mathrm{d}u\right)_{u=x-1}\\ &=-2\int{u^{-3}\mathrm{d}u}-\int{u^{-2}\mathrm{d}u}\\ &=u^{-2}-u^{-1}+C\\ &=(x-1)^{-2}+(x-1)^{-1}+C \end{aligned} (2)(1x)31+xdx=(1x)321+xdx=(u32+udu)u=x1=2u3duu2du=u2u1+C=(x1)2+(x1)1+C

( 3 ) ∫ x 2 1 − x 6 d x = ∫ d 1 3 x 3 1 − x 6 = 1 3 ∫ d x 3 1 − x 6 = ( 1 3 ∫ d u 1 − u 2 ) u = x 3 = − 1 3 ∫ d u ( u + 1 ) ( u − 1 ) = − 1 3 ∫ 1 2 ( 1 u − 1 − 1 u + 1 ) d u = − 1 6 ∫ d u u − 1 + 1 6 ∫ d u u + 1 = − 1 6 ln ⁡ ∣ u − 1 ∣ + 1 6 ln ⁡ ∣ u + 1 ∣ + C = 1 6 ln ⁡ ∣ u + 1 u − 1 ∣ + C = 1 6 ln ⁡ ∣ x 3 + 1 x 3 − 1 ∣ + C \begin{aligned} (3)\int\frac{x^2}{1-x^6}\mathrm{d}x &=\int\frac{\mathrm{d}\frac{1}{3}x^3}{1-x^6}\\ &=\frac{1}{3}\int\frac{\mathrm{d}x^3}{1-x^6}\\ &=\left(\frac{1}{3}\int\frac{\mathrm{d}u}{1-u^2}\right)_{u=x^3}\\ &=-\frac{1}{3}\int\frac{\mathrm{d}u}{(u+1)(u-1)}\\ &=-\frac{1}{3}\int\frac{1}{2}\left(\frac{1}{u-1}-\frac{1}{u+1}\right)\mathrm{d}u\\ &=-\frac{1}{6}\int\frac{\mathrm{d}u}{u-1}+\frac{1}{6}\int\frac{\mathrm{d}u}{u+1}\\ &=-\frac{1}{6}\ln\left|u-1\right|+\frac{1}{6}\ln\left|u+1\right|+C\\ &=\frac{1}{6}\ln\left|\frac{u+1}{u-1}\right|+C\\ &=\frac{1}{6}\ln\left|\frac{x^3+1}{x^3-1}\right|+C \end{aligned} (3)1x6x2dx=1x6d31x3=311x6dx3=(311u2du)u=x3=31(u+1)(u1)du=3121(u11u+11)du=61u1du+61u+1du=61lnu1+61lnu+1+C=61lnu1u+1+C=61lnx31x3+1+C

( 4 ) ∫ 1 − cos ⁡ x x − sin ⁡ x d x = ∫ d ( x − sin ⁡ x ) x − sin ⁡ x = ln ⁡ ∣ x − sin ⁡ x ∣ + C \begin{aligned} (4)\int\frac{1-\cos{x}}{x-\sin{x}}\mathrm{d}x &=\int\frac{\mathrm{d}(x-\sin{x})}{x-\sin{x}}\\ &=\ln\left|x-\sin{x}\right|+C \end{aligned} (4)xsinx1cosxdx=xsinxd(xsinx)=lnxsinx+C

( 5 ) ∫ ln ⁡ ln ⁡ x x d x = ∫ ln ⁡ ln ⁡ x d x x = ∫ ln ⁡ ln ⁡ x d ln ⁡ x = ( ∫ ln ⁡ u d u ) u = ln ⁡ x = u ln ⁡ u − ∫ u d ln ⁡ u = u ln ⁡ u − ∫ 1 d u = u ln ⁡ u − u + C = u ( ln ⁡ u − 1 ) + C = ln ⁡ x ( ln ⁡ ln ⁡ x − 1 ) + C \begin{aligned} (5)\int\frac{\ln\ln{x}}{x}\mathrm{d}x &=\int\ln\ln{x}\frac{\mathrm{d}x}{x}\\ &=\int\ln\ln{x}\mathrm{d}\ln x\\ &=\left(\int\ln{u}\mathrm{d}u\right)_{u=\ln{x}}\\ &=u\ln{u}-\int{u}\mathrm{d}\ln{u}\\ &=u\ln{u}-\int{1}\mathrm{d}u\\ &=u\ln{u}-u+C\\ &=u(\ln{u}-1)+C\\ &=\ln{x}(\ln\ln{x}-1)+C \end{aligned} (5)xlnlnxdx=lnlnxxdx=lnlnxdlnx=(lnudu)u=lnx=ulnuudlnu=ulnu1du=ulnuu+C=u(lnu1)+C=lnx(lnlnx1)+C

( 6 ) ∫ d x x ( x 9 + 1 ) = ∫ x 8 d x x 9 ( x 9 + 1 ) = 1 9 ∫ d x 9 x 9 ( x 9 + 1 ) = 1 9 ∫ 1 x 9 − 1 x 9 + 1 d x 9 = 1 9 ∫ d x 9 x 9 − 1 9 ∫ d x 9 x 9 + 1 = 1 9 ln ⁡ ∣ x 9 ∣ − 1 9 ln ⁡ ∣ x 9 + 1 ∣ + C = 1 9 ln ⁡ ∣ x 9 x 9 + 1 ∣ + C \begin{aligned} (6)\int\frac{\mathrm{d}x}{x\left(x^9+1\right)} &=\int\frac{x^8\mathrm{d}x}{x^9\left(x^9+1\right)}\\ &=\frac{1}{9}\int\frac{\mathrm{d}x^9}{x^9\left(x^9+1\right)}\\ &=\frac{1}{9}\int\frac{1}{x^9}-\frac{1}{x^9+1}\mathrm{d}x^9\\ &=\frac{1}{9}\int\frac{\mathrm{d}x^9}{x^9}-\frac{1}{9}\int\frac{\mathrm{d}x^9}{x^9+1}\\ &=\frac{1}{9}\ln\left|x^9\right|-\frac{1}{9}\ln\left|x^9+1\right|+C\\ &=\frac{1}{9}\ln\left|\frac{x^9}{x^9+1}\right|+C \end{aligned} (6)x(x9+1)dx=x9(x9+1)x8dx=91x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值