前言
该章节的小节题目比较简单,但综合题目(总习题五)有一定难度。作为自修不定积分的学习笔记,此篇博文解析习题步骤,记录学习成果。
另外,本人只借助此书学习微积分相关知识,不希求学习经济数学专业内容,因此只做了第一大题,第二大题没有做。
录入匆忙,难免有纰漏,敬请指正。
正文开始
1、求下列不定积分(a,b为常数)
( 1 ) ∫ d x e x + e − x = ∫ e x d x ( e x ) 2 + 1 = ∫ d e x ( e x ) 2 + 1 = ( ∫ d u u 2 + 1 ) u = e x = arctan u + C = arctan e x + C \begin{aligned} (1)\int\frac{\mathrm{d}x}{\mathrm{e}^x+\mathrm{e}^{-x}} &=\int\frac{\mathrm{e}^x\mathrm{d}x}{\left(\mathrm{e}^x\right)^2+1}\\ &=\int\frac{\mathrm{d}\mathrm{e}^x}{\left(\mathrm{e}^x\right)^2+1}\\ &=\left(\int\frac{\mathrm{d}u}{u^2+1}\right)_{u=\mathrm{e}^x}\\ &=\arctan{u}+C\\ &=\arctan{\mathrm{e}^x}+C \end{aligned} (1)∫ex+e−xdx=∫(ex)2+1exdx=∫(ex)2+1dex=(∫u2+1du)u=ex=arctanu+C=arctanex+C
( 2 ) ∫ 1 + x ( 1 − x ) 3 d x = ∫ 2 − 1 + x ( 1 − x ) 3 d x = ( ∫ 2 + u − u 3 d u ) u = x − 1 = − 2 ∫ u − 3 d u − ∫ u − 2 d u = u − 2 − u − 1 + C = ( x − 1 ) − 2 + ( x − 1 ) − 1 + C \begin{aligned} (2)\int\frac{1+x}{(1-x)^3}\mathrm{d}x &=\int\frac{2-1+x}{(1-x)^3}\mathrm{d}x\\ &=\left(\int\frac{2+u}{-u^3}\mathrm{d}u\right)_{u=x-1}\\ &=-2\int{u^{-3}\mathrm{d}u}-\int{u^{-2}\mathrm{d}u}\\ &=u^{-2}-u^{-1}+C\\ &=(x-1)^{-2}+(x-1)^{-1}+C \end{aligned} (2)∫(1−x)31+xdx=∫(1−x)32−1+xdx=(∫−u32+udu)u=x−1=−2∫u−3du−∫u−2du=u−2−u−1+C=(x−1)−2+(x−1)−1+C
( 3 ) ∫ x 2 1 − x 6 d x = ∫ d 1 3 x 3 1 − x 6 = 1 3 ∫ d x 3 1 − x 6 = ( 1 3 ∫ d u 1 − u 2 ) u = x 3 = − 1 3 ∫ d u ( u + 1 ) ( u − 1 ) = − 1 3 ∫ 1 2 ( 1 u − 1 − 1 u + 1 ) d u = − 1 6 ∫ d u u − 1 + 1 6 ∫ d u u + 1 = − 1 6 ln ∣ u − 1 ∣ + 1 6 ln ∣ u + 1 ∣ + C = 1 6 ln ∣ u + 1 u − 1 ∣ + C = 1 6 ln ∣ x 3 + 1 x 3 − 1 ∣ + C \begin{aligned} (3)\int\frac{x^2}{1-x^6}\mathrm{d}x &=\int\frac{\mathrm{d}\frac{1}{3}x^3}{1-x^6}\\ &=\frac{1}{3}\int\frac{\mathrm{d}x^3}{1-x^6}\\ &=\left(\frac{1}{3}\int\frac{\mathrm{d}u}{1-u^2}\right)_{u=x^3}\\ &=-\frac{1}{3}\int\frac{\mathrm{d}u}{(u+1)(u-1)}\\ &=-\frac{1}{3}\int\frac{1}{2}\left(\frac{1}{u-1}-\frac{1}{u+1}\right)\mathrm{d}u\\ &=-\frac{1}{6}\int\frac{\mathrm{d}u}{u-1}+\frac{1}{6}\int\frac{\mathrm{d}u}{u+1}\\ &=-\frac{1}{6}\ln\left|u-1\right|+\frac{1}{6}\ln\left|u+1\right|+C\\ &=\frac{1}{6}\ln\left|\frac{u+1}{u-1}\right|+C\\ &=\frac{1}{6}\ln\left|\frac{x^3+1}{x^3-1}\right|+C \end{aligned} (3)∫1−x6x2dx=∫1−x6d31x3=31∫1−x6dx3=(31∫1−u2du)u=x3=−31∫(u+1)(u−1)du=−31∫21(u−11−u+11)du=−61∫u−1du+61∫u+1du=−61ln∣u−1∣+61ln∣u+1∣+C=61ln∣∣∣∣u−1u+1∣∣∣∣+C=61ln∣∣∣∣x3−1x3+1∣∣∣∣+C
( 4 ) ∫ 1 − cos x x − sin x d x = ∫ d ( x − sin x ) x − sin x = ln ∣ x − sin x ∣ + C \begin{aligned} (4)\int\frac{1-\cos{x}}{x-\sin{x}}\mathrm{d}x &=\int\frac{\mathrm{d}(x-\sin{x})}{x-\sin{x}}\\ &=\ln\left|x-\sin{x}\right|+C \end{aligned} (4)∫x−sinx1−cosxdx=∫x−sinxd(x−sinx)=ln∣x−sinx∣+C
( 5 ) ∫ ln ln x x d x = ∫ ln ln x d x x = ∫ ln ln x d ln x = ( ∫ ln u d u ) u = ln x = u ln u − ∫ u d ln u = u ln u − ∫ 1 d u = u ln u − u + C = u ( ln u − 1 ) + C = ln x ( ln ln x − 1 ) + C \begin{aligned} (5)\int\frac{\ln\ln{x}}{x}\mathrm{d}x &=\int\ln\ln{x}\frac{\mathrm{d}x}{x}\\ &=\int\ln\ln{x}\mathrm{d}\ln x\\ &=\left(\int\ln{u}\mathrm{d}u\right)_{u=\ln{x}}\\ &=u\ln{u}-\int{u}\mathrm{d}\ln{u}\\ &=u\ln{u}-\int{1}\mathrm{d}u\\ &=u\ln{u}-u+C\\ &=u(\ln{u}-1)+C\\ &=\ln{x}(\ln\ln{x}-1)+C \end{aligned} (5)∫xlnlnxdx=∫lnlnxxdx=∫lnlnxdlnx=(∫lnudu)u=lnx=ulnu−∫udlnu=ulnu−∫1du=ulnu−u+C=u(lnu−1)+C=lnx(lnlnx−1)+C
( 6 ) ∫ d x x ( x 9 + 1 ) = ∫ x 8 d x x 9 ( x 9 + 1 ) = 1 9 ∫ d x 9 x 9 ( x 9 + 1 ) = 1 9 ∫ 1 x 9 − 1 x 9 + 1 d x 9 = 1 9 ∫ d x 9 x 9 − 1 9 ∫ d x 9 x 9 + 1 = 1 9 ln ∣ x 9 ∣ − 1 9 ln ∣ x 9 + 1 ∣ + C = 1 9 ln ∣ x 9 x 9 + 1 ∣ + C \begin{aligned} (6)\int\frac{\mathrm{d}x}{x\left(x^9+1\right)} &=\int\frac{x^8\mathrm{d}x}{x^9\left(x^9+1\right)}\\ &=\frac{1}{9}\int\frac{\mathrm{d}x^9}{x^9\left(x^9+1\right)}\\ &=\frac{1}{9}\int\frac{1}{x^9}-\frac{1}{x^9+1}\mathrm{d}x^9\\ &=\frac{1}{9}\int\frac{\mathrm{d}x^9}{x^9}-\frac{1}{9}\int\frac{\mathrm{d}x^9}{x^9+1}\\ &=\frac{1}{9}\ln\left|x^9\right|-\frac{1}{9}\ln\left|x^9+1\right|+C\\ &=\frac{1}{9}\ln\left|\frac{x^9}{x^9+1}\right|+C \end{aligned} (6)∫x(x9+1)dx=∫x9(x9+1)x8dx=91∫x