Kmeans方法
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
int main() {
Mat src, dst, gray_src;
src = imread("D:/b.jpeg");
if (src.empty()) {
printf("could not load image...\n");
return -1;
}
//namedWindow("input_image", WINDOW_AUTOSIZE);
//imshow("input_image",src);
Mat img(500, 500, CV_8UC3);
RNG rng(12345);
Scalar colorTab[] = {
Scalar(0, 0, 255),
Scalar(0, 255, 0),
Scalar(255, 0, 0),
Scalar(0, 255, 255),
Scalar(255, 0, 255)
};
int numCluster = rng.uniform(2, 5);
printf("number of clusters:%d\n",numCluster);
int sampelCount = rng.uniform(5, 1000);
Mat points(sampelCount,1,CV_32FC2);
Mat labels;
Mat centers;
//生成随机数
for (int k = 0; k < numCluster; k++) {
Point center;
center.x = rng.uniform(0, img.cols);
center.y = rng.uniform(0, img.rows);
Mat pointChunk = points.rowRange(k * sampelCount / numCluster, k == numCluster - 1 ?
sampelCount:(k + 1) * sampelCount / numCluster);
rng.fill(pointChunk,RNG::NORMAL,Scalar(center.x,center.y),Scalar(img.cols*0.05,img.rows*0.05));
}
randShuffle(points, 1, &rng);
//使用kmean
kmeans(points,numCluster,labels,TermCriteria(TermCriteria::EPS+TermCriteria::COUNT,10,0.1),
3,KMEANS_PP_CENTERS,centers);
//用不同颜色显示分类
for (int i = 0; i < sampelCount; i++) {
int index = labels.at<int>(i);
Point p = points.at<Point2f>(i);
circle(img, p, 2, colorTab[index], -1, 8);
}
//绘制每个聚类的中心
for (int i = 0; i < centers.rows; i++) {
int x = centers.at<float>(i, 0);
int y = centers.at<float>(i, 1);
printf("c.x=%d,c.y=%d",x,y);
circle(img, Point(x, y), 40, colorTab[i], 1, LINE_AA);
}
imshow("Kmean_data",img);
waitKey(0);
return 0;
}
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {
Mat src = imread("D:/b.jpeg");
if (src.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", WINDOW_AUTOSIZE);
imshow("input image", src);
Scalar colorTab[] = {
Scalar(0, 0, 255),
Scalar(0, 255, 0),
Scalar(255, 0, 0),
Scalar(0, 255, 255),
Scalar(255, 0, 255)
};
int width = src.cols;
int height = src.rows;
int dims = src.channels();
// 初始化定义
int sampleCount = width * height;
int clusterCount = 4;
Mat points(sampleCount, dims, CV_32F, Scalar(10));
Mat labels;
Mat centers(clusterCount, 1, points.type());
// RGB 数据转换到样本数据
int index = 0;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
index = row * width + col;
Vec3b bgr = src.at<Vec3b>(row, col);
points.at<float>(index, 0) = static_cast<int>(bgr[0]);
points.at<float>(index, 1) = static_cast<int>(bgr[1]);
points.at<float>(index, 2) = static_cast<int>(bgr[2]);
}
}
// 运行K-Means
TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
kmeans(points, clusterCount, labels, criteria, 3, KMEANS_PP_CENTERS, centers);
// 显示图像分割结果
Mat result = Mat::zeros(src.size(), src.type());
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
index = row * width + col;
int label = labels.at<int>(index, 0);
result.at<Vec3b>(row, col)[0] = colorTab[label][0];
result.at<Vec3b>(row, col)[1] = colorTab[label][1];
result.at<Vec3b>(row, col)[2] = colorTab[label][2];
}
}
for (int i = 0; i < centers.rows; i++) {
int x = centers.at<float>(i, 0);
int y = centers.at<float>(i, 1);
printf("center %d = c.x : %d, c.y : %d\n", i, x, y);
}
imshow("KMeans Image Segmentation Demo", result);
waitKey(0);
return 0;
}