【Leetcode】407. Trapping Rain Water II

该博客详细介绍了如何使用优先队列解决二维矩阵雨水填充问题,时间复杂度为O(mnlogmn),空间复杂度为O(mn)。通过遍历矩阵边缘并将柱子加入堆中,然后逐步处理相邻柱子,计算并累计可以填充的雨水量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

https://leetcode.com/problems/trapping-rain-water-ii/

在这里插入图片描述
给定一个二维矩阵 A A A,每个位置表示这个位置的柱子高度。问下雨的时候这个矩阵上面最多能盛多少水。

思路参考https://blog.youkuaiyun.com/qq_46105170/article/details/108575830。代码如下:

import java.util.Objects;
import java.util.PriorityQueue;

public class Solution {
    
    class Pair {
        int x, y, h;
        
        public Pair(int x, int y, int h) {
            this.x = x;
            this.y = y;
            this.h = h;
        }
    }
    
    public int trapRainWater(int[][] heightMap) {
        PriorityQueue<Pair> minHeap = new PriorityQueue<>((p1, p2) -> Integer.compare(p1.h, p2.h));
        int m = heightMap.length, n = heightMap[0].length;

		// 先把外围一圈加入堆中,并标记为已访问
        boolean[][] visited = new boolean[m][n];
        for (int i = 0; i < m; i++) {
            minHeap.offer(new Pair(i, 0, heightMap[i][0]));
            visited[i][0] = true;
            minHeap.offer(new Pair(i, n - 1, heightMap[i][n - 1]));
            visited[i][n - 1] = true;
        }
        for (int i = 0; i < n; i++) {
            minHeap.offer(new Pair(0, i, heightMap[0][i]));
            visited[0][i] = true;
            minHeap.offer(new Pair(m - 1, i, heightMap[m - 1][i]));
            visited[m - 1][i] = true;
        }
        
        // res统计盛的水
        int res = 0;
        int[] d = {1, 0, -1, 0, 1};
        while (!minHeap.isEmpty()) {
            Pair cur = minHeap.poll();
            for (int i = 0; i < 4; i++) {
                int nextX = cur.x + d[i], nextY = cur.y + d[i + 1];
                if (0 <= nextX && nextX < m && 0 <= nextY && nextY < n) {
                    if (visited[nextX][nextY]) {
                        continue;
                    }
                    
                    res += Math.max(0, cur.h - heightMap[nextX][nextY]);
                    
                    Pair next = new Pair(nextX, nextY, Math.max(cur.h, heightMap[nextX][nextY]));
                    visited[nextX][nextY] = true;
                    minHeap.offer(next);
                }
            }
        }
        
        return res;
    }
}

时间复杂度 O ( m n log ⁡ ( m n ) ) O(mn\log (mn)) O(mnlog(mn)),空间 O ( m n ) O(mn) O(mn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值