离线数仓ADS层

11.1 流量主题

1.1.1 各渠道流量统计

需求说明如下。
统计周期 统计粒度 指标 说明
最近1/7/30日 渠道 访客数 统计访问人数
最近1/7/30日 渠道 会话平均停留时长 统计每个会话平均停留时长
最近1/7/30日 渠道 会话平均浏览页面数 统计每个会话平均浏览页面数
最近1/7/30日 渠道 会话总数 统计会话总数
最近1/7/30日 渠道 跳出率 只有一个页面的会话的比例
1)建表语句

DROP TABLE IF EXISTS ads_traffic_stats_by_channel;
CREATE EXTERNAL TABLE ads_traffic_stats_by_channel
(
    `dt`               STRING COMMENT '统计日期',
    `recent_days`      BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `channel`          STRING COMMENT '渠道',
    `uv_count`         BIGINT COMMENT '访客人数',
    `avg_duration_sec` BIGINT COMMENT '会话平均停留时长,单位为秒',
    `avg_page_count`   BIGINT COMMENT '会话平均浏览页面数',
    `sv_count`         BIGINT COMMENT '会话数',
    `bounce_rate`      DECIMAL(16, 2) COMMENT '跳出率'
) COMMENT '各渠道流量统计'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    LOCATION '/warehouse/gmall/ads/ads_traffic_stats_by_channel/';

2)数据装载

insert overwrite table ads_traffic_stats_by_channel
select * from ads_traffic_stats_by_channel
union
select
    '2020-06-14' dt,
    recent_days,
    channel,
    cast(count(distinct(mid_id)) as bigint) uv_count,
    cast(avg(during_time_1d)/1000 as bigint) avg_duration_sec,
    cast(avg(page_count_1d) as bigint) avg_page_count,
    cast(count(*) as bigint) sv_count,
    cast(sum(if(page_count_1d=1,1,0))/count(*) as decimal(16,2)) bounce_rate
from dws_traffic_session_page_view_1d lateral view explode(array(1,7,30)) tmp as recent_days
where dt>=date_add('2020-06-14',-recent_days+1)
group by recent_days,channel;

11.1.2 路径分析
用户路径分析,顾名思义,就是指用户在APP或网站中的访问路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径进行分析。
用户访问路径的可视化通常使用桑基图。如下图所示,该图可真实还原用户的访问路径,包括页面跳转和页面访问次序。
桑基图需要我们提供每种页面跳转的次数,每个跳转由source/target表示,source指跳转起始页面,target表示跳转终到页面。
在这里插入图片描述
1)建表语句

DROP TABLE IF EXISTS ads_page_path;
CREATE EXTERNAL TABLE ads_page_path
(
    `dt`          STRING COMMENT '统计日期',
    `recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `source`      STRING COMMENT '跳转起始页面ID',
    `target`      STRING COMMENT '跳转终到页面ID',
    `path_count`  BIGINT COMMENT '跳转次数'
) COMMENT '页面浏览路径分析'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    LOCATION '/warehouse/gmall/ads/ads_page_path/';

2)数据装载

insert overwrite table ads_page_path
select * from ads_page_path
union
select
    '2020-06-14' dt,
    recent_days,
    source,
    nvl(target,'null'),
    count(*) path_count
from
(
    select
        recent_days,
        concat('step-',rn,':',page_id) source,
        concat('step-',rn+1,':',next_page_id) target
    from
    (
        select
            recent_days,
            page_id,
            lead(page_id,1,null) over(partition by session_id,recent_days) next_page_id,
            row_number() over (partition by session_id,recent_days order by view_time) rn
        from dwd_traffic_page_view_inc lateral view explode(array(1,7,30)) tmp as recent_days
        where dt>=date_add('2020-06-14',-recent_days+1)
    )t1
)t2
group by recent_days,source,target;

11.2 用户主题

11.2.1 用户变动统计

该需求包括两个指标,分别为流失用户数和回流用户数,以下为对两个指标的解释说明。
统计周期 指标 说明
最近1日 流失用户数 之前活跃过的用户,最近一段时间未活跃,就称为流失用户。此处要求统计7日前(只包含7日前当天)活跃,但最近7日未活跃的用户总数。
最近1日 回流用户数 之前的活跃用户,一段时间未活跃(流失),今日又活跃了,就称为回流用户。此处要求统计回流用户总数。
1)建表语句

DROP TABLE IF EXISTS ads_user_change;
CREATE EXTERNAL TABLE ads_user_change
(
    `dt`               STRING COMMENT '统计日期',
    `user_churn_count` BIGINT COMMENT '流失用户数',
    `user_back_count`  BIGINT COMMENT '回流用户数'
) COMMENT '用户变动统计'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    LOCATION '/warehouse/gmall/ads/ads_user_change/';

2)数据装载

insert overwrite table ads_user_change
select * from ads_user_change
union
select
    churn.dt,
    user_churn_count,
    user_back_count
from
(
    select
        '2020-06-14' dt,
        count(*) user_churn_count
    from dws_user_user_login_td
    where dt='2020-06-14'
    and login_date_last=date_add('2020-06-14',-7)
)churn
join
(
    select
        '2020-06-14' dt,
        count(*) user_back_count
    from
    (
        select
            user_id,
            login_date_last
        from dws_user_user_login_td
        where dt='2020-06-14'
    )t1
    join
    (
        select
            user_id,
            login_date_last login_date_previous
        from dws_user_user_login_td
        where dt=date_add('2020-06-14',-1)
    )t2
    on t1.user_id=t2.user_id
    where datediff(login_date_last,login_date_previous)>=8
)back
on churn.dt=back.dt;

11.2.2 用户留存率

留存分析一般包含新增留存和活跃留存分析。
新增留存分析是分析某天的新增用户中,有多少人有后续的活跃行为。活跃留存分析是分析某天的活跃用户中,有多少人有后续的活跃行为。
留存分析是衡量产品对用户价值高低的重要指标。
此处要求统计新增留存率,新增留存率具体是指留存用户数与新增用户数的比值,例如2020-06-14新增100个用户,1日之后(2020-06-15)这100人中有80个人活跃了,那2020-06-14的1日留存数则为80,2020-06-14的1日留存率则为80%。
要求统计每天的1至7日留存率,如下图所示。
在这里插入图片描述
1)建表语句

DROP TABLE IF EXISTS ads_user_retention;
CREATE EXTERNAL TABLE ads_user_retention
(
    `dt`              STRING COMMENT '统计日期',
    `create_date`     STRING COMMENT '用户新增日期',
    `retention_day`   INT COMMENT '截至当前日期留存天数',
    `retention_count` BIGINT COMMENT '留存用户数量',
    `new_user_count`  BIGINT COMMENT '新增用户数量',
    `retention_rate`  DECIMAL(16, 2) COMMENT '留存率'
) COMMENT '用户留存率'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    LOCATION '/warehouse/gmall/ads/ads_user_retention/';

2)数据装载

insert overwrite table ads_user_retention
select * from ads_user_retention
union
select
    '2020-06-14' dt,
    login_date_first create_date,
    datediff('2020-06-14',login_date_first) retention_day,
    sum(if(login_date_last='2020-06-14',1,0)) retention_count,
    count(*) new_user_count,
    cast(sum(if(login_date_last='2020-06-14',1,0))/count(*)*100 as decimal(16,2)) retention_rate
from
(
    select
        user_id,
        date_id login_date_first
    from dwd_user_register_inc
    where dt>=date_add('2020-06-14',-7)
    and dt<'2020-06-14'
)t1
join
(
    select
        user_id,
        login_date_last
    from dws_user_user_login_td
    where dt='2020-06-14'
)t2
on t1.user_id=t2.user_id
group by login_date_first;

11.2.3 用户新增活跃统计
需求说明如下
统计周期 指标 指标说明
最近1、7、30日 新增用户数 略
最近1、7、30日 活跃用户数 略
1)建表语句

DROP TABLE IF EXISTS ads_user_stats;
CREATE EXTERNAL TABLE ads_user_stats
(
    `dt`                STRING COMMENT '统计日期',
    `recent_days`       BIGINT COMMENT '最近n日,1:最近1日,7:最近7日,30:最近30日',
    `new_user_count`    BIGINT COMMENT '新增用户数',
    `active_user_count` BIGINT COMMENT '活跃用户数'
) COMMENT '用户新增活跃统计'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    LOCATION '/warehouse/gmall/ads/ads_user_stats/';

2)数据装载

insert overwrite table ads_user_stats
select * from ads_user_stats
union
select
    '2020-06-14' dt,
    t1.recent_days,
    new_user_count,
    active_user_count
from
(
    select
        recent_days,
        sum(if(login_date_last>=date_add('2020-06-14',-recent_days+1),1,0)) new_user_count
    from dws_user_user_login_td lateral view explode(array(1,7,30)) tmp as recent_days
    where dt='2020-06-14'
    group by recent_days
)t1
join
(
    select
        recent_days,
        sum(if(date_id>=date_add('2020-06-14',-recent_days+1),1,0)) active_user_count
    from dwd_user_register_inc lateral view explode(array(1,7,30)) tmp as recent_days
    group by recent_days
)t2
on t1.recent_days=t2.recent_days;

11.2.4 用户行为漏斗分析
漏斗分析是一个数据分析模型,它能够科学反映一个业务过程从起点到终点各阶段用户转化情况。由于其能将各阶段环节都展示出来,故哪个阶段存在问题,就能一目了然。
在这里插入图片描述

该需求要求统计一个完整的购物流程各个阶段的人数,具体说明如下:
统计周期 指标 说明
最近1、7、30日 首页浏览人数 略
最近1、7、30日 商品详情页浏览人数 略
最近1、7、30日 加购人数 略
最近1、7、30日 下单人数 略
最近1、7、30日 支付人数 支付成功人数
1)建表语句

DROP TABLE IF EXISTS ads_user_action;
CREATE EXTERNAL TABLE ads_user_action
(
    `dt`                STRING COMMENT '统计日期',
    `recent_days`       BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `home_count`        BIGINT COMMENT '浏览首页人数',
    `good_detail_count` BIGINT COMMENT '浏览商品详情页人数',
    `cart_count`        BIGINT COMMENT '加入购物车人数',
    `order_count`       BIGINT COMMENT '下单人数',
    `payment_count`     BIGINT COMMENT '支付人数'
) COMMENT '漏斗分析'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    LOCATION '/warehouse/gmall/ads/ads_user_action/';

2)数据装载

insert overwrite table ads_user_action
select * from ads_user_action
union
select
    '2020-06-14' dt,
    page.recent_days,
    home_count,
    good_detail_count,
    cart_count,
    order_count,
    payment_count
from
(
    select
        1 recent_days,
        sum(if(page_id='home',1,0)) home_count,
        sum(if(page_id='good_detail',1,0)) good_detail_count
    from dws_traffic_page_visitor_page_view_1d
    where dt='2020-06-14'
    and page_id in ('home','good_detail')
    union all
    select
        recent_days,
        sum(if(page_id='home' and view_count>0,1,0)),
        sum(if(page_id='good_detail' and view_count>0,1,0))
    from
    (
        select
            recent_days,
            page_id,
            case recent_days
                when 7 then view_count_7d
                when 30 then view_count_30d
            end view_count
        from dws_traffic_page_visitor_page_view_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='2020-06-14'
        and page_id in ('home','good_detail')
    )t1
    group by recent_days
)page
join
(
    select
        1 recent_days,
        count(*) cart_count
    from dws_trade_user_cart_add_1d
    where dt='2020-06-14'
    union all
    select
        recent_days,
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值