It refers to algorithms that learn X to Y or input to output mappings.The key characteristic of supervised learning is that you give your learning algorithm examples to learn from.That includes the right answers which means the correct label Y for a given input X,and is by seeing correct pairs of input X and desired output label Y that the learning algorithm eventually learns to take just the input alone without the output label and gives a reasonably accurate prediction or guess of the output.
它指的是学习X到Y或输入到输出映射的算法。监督学习的关键特点是你给你的学习算法提供了学习的例子。这包括正确的答案,即给定输入X的正确标签Y,并且通过看到正确的输入X和期望的输出标签Y对,学习算法最终学会只接受没有输出标签的输入,并给出对输出的合理准确的预测或猜测。
Example:
Input(X) | Output(Y) | Application |
---|---|---|
spam?(0/1) | spam filtering | |
audio | text transcripts | speech recognition |
English | Spanish | machine translation |
ad,user info | click?(0/1) | online advertising |
image,radar info | position of other cars | self-driving car |
image of phone | defect?(0/1) | visual inspection |
Regression 回归
Linear Regression
model:
f w , b ( x ) = w x + b f_{w,b}(x)=wx+b fw,b(x)=wx+b
parameters:
w , b w,b w,b
cost function:
J ( w , b ) = 1 2 m ∑ i = 1 m ( f w , b ( x ( i ) ) − y ( i ) ) 2 J(w,b)=\frac{1}{2m}\sum^{m}_{i=1}{(f_{w,b}(x^{(i)})-y^{(i)})^2} J(w,b)=2m1i=1∑m(fw,b(x(i))−y(i))<