【Python机器学习】Supervised learning 监督学习

It refers to algorithms that learn X to Y or input to output mappings.The key characteristic of supervised learning is that you give your learning algorithm examples to learn from.That includes the right answers which means the correct label Y for a given input X,and is by seeing correct pairs of input X and desired output label Y that the learning algorithm eventually learns to take just the input alone without the output label and gives a reasonably accurate prediction or guess of the output.

它指的是学习X到Y或输入到输出映射的算法。监督学习的关键特点是你给你的学习算法提供了学习的例子。这包括正确的答案,即给定输入X的正确标签Y,并且通过看到正确的输入X和期望的输出标签Y对,学习算法最终学会只接受没有输出标签的输入,并给出对输出的合理准确的预测或猜测。

Example:

Input(X) Output(Y) Application
email spam?(0/1) spam filtering
audio text transcripts speech recognition
English Spanish machine translation
ad,user info click?(0/1) online advertising
image,radar info position of other cars self-driving car
image of phone defect?(0/1) visual inspection

Regression 回归

Linear Regression

model:
f w , b ( x ) = w x + b f_{w,b}(x)=wx+b fw,b(x)=wx+b
parameters:
w , b w,b w,b
cost function:
J ( w , b ) = 1 2 m ∑ i = 1 m ( f w , b ( x ( i ) ) − y ( i ) ) 2 J(w,b)=\frac{1}{2m}\sum^{m}_{i=1}{(f_{w,b}(x^{(i)})-y^{(i)})^2} J(w,b)=2m1i=1m(fw,b(x(i))y(i))<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值