FFmpeg对UE4相机画面实时推流

        大家好,这篇博客的主要内容是把自己在校做的项目的方法和大家分享,主要内容是使用C++将UE4的虚拟相机画面通过ffmpeg进行推流,主要涉及三部分内容:首先是UE4的虚拟相机画面实时获取,接着准备rtsp服务器,最后使用ffmpeg推流。

        该功能基于Unreal Engine4.27平台,下面介绍如何实现(由于具体的实现细节比较多,全部都写上比较麻烦,所以这里只写个大概实现流程,如果有需要的话可以给我留言):

1.准备渲染目标Render Target

参考:

版权声明:本文为优快云博主「Shiyoku」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/Shiyoku/article/details/121699097

不过这里我们只需要创建出渲染目标Render Target即可。

2.创建UE4 C++项目

2.1 在UE4中创建好C++类,选择继承Actor,将cpp代码命名为CameraReader(建议和我一样,否则后面需要改代码里的一些名称)

2.2 代码主要部分如下(想要全部代码的可以找我)

void ACameraReader::start() {
    if (!Camera_Texture2D || !Camera_RenderTarget2)
        UE_LOG(LogTemp, Error, TEXT("Error CameraTarget"));
    //FRenderTarget类提供的从渲染目标读取像素数据的方法
    FRenderTarget* RenderTarget = Camera_RenderTarget2->GameThread_GetRenderTargetResource(); 
    //将像素数据传给ColorData数组
    RenderTarget->ReadPixels(ColorData); 
    //获取颜色数据
    frame2 = cv::Mat(cvSize, CV_8UC4, ColorData.GetData());

    //展示opencv窗口;;;用于展示获取到的虚拟相机画面
    if (!frame2.empty())
        cv::imshow("Display2", frame2);

    if (cv::waitKey(1) == 27) // 按下ESC键退出
        EXIT();

    if (frame2.empty()) {
        UE_LOG(LogTemp, Error, TEXT("Failed to read frame from camera"));
        return;
    }

    //下面使用ffmpeg进行实时推流虚拟相机画面
    const int stride[] = { static_cast<int>(frame2.step[0]) };
    sws_scale(sws_ctx2, &frame2.data, stride, 0, VideoSize.Y, dstFrame2->data, dstFrame2->linesize);

    dstFrame2->pts += av_rescale_q(1, mDstVideoCodecCtx2->time_base, mDstVideoStream2->time_base);
    ret2 = avcodec_send_frame(mDstVideoCodecCtx2, dstFrame2);
    if (ret2 < 0) {
        UE_LOG(LogTemp, Error, TEXT("Error sending frame to encoder"));
        return;
    }

    AVPacket pkt;
    av_init_packet(&pkt);
    ret2 = avcodec_receive_packet(mDstVideoCodecCtx2, &pkt);
    if (ret2 < 0) {
        UE_LOG(LogTemp, Log, TEXT("Error encoding a frame"));
        av_packet_unref(&pkt);
        return;
    }

    pkt.stream_index = mDstVideoIndex2;
    
    ret2 = av_interleaved_write_frame(mDstFmtCtx2, &pkt);
    if (ret2 < 0) {
        UE_LOG(LogTemp, Error, TEXT("Error while writing frame to output"));
        return;
    } 
    av_packet_unref(&pkt);
}

3.rtsp服务器下载及环境配置

推流需要使用rtsp服务器,这里使用zlm Media,以及opencv库和ffmpeg库:

这里下载:
链接: https://pan.baidu.com/s/1u8Vo2r7IcHhv8aZe9JJxAw?pwd=etat 提取码: etat

3.1.zlm Media使用

解压zlm-master文件夹后,进入V2023.3.25.windows文件夹,双击打开”start.bat”,这个是推流服务器。

在V2023.3.25.windows文件夹中,找到config.ini,双击打开,找到[rtsp]部分,需要记住port端口号,用于后面的rtsp地址设置

3.2.opencv和ffmpeg库配置

3.2.1 环境变量

右击此电脑打开环境变量,在Path中,加入路径:

..\opencv\build\x64\vc15\bin

..\ffmpeg-win64-shared-4.4\ffmpeg-win64-shared-4.4\bin

如下:

3.2.2 UE4环境设置

        在UE4的项目文件夹中,将下面的ThirdParty文件夹解压到项目文件夹:
链接: https://pan.baidu.com/s/17IsBdVuQyedF4iGzGfGFfg?pwd=6iab 提取码: 6iab

        之后还需要设置UE4的C++项目build.cs文件,在public class MyProject01 : ModuleRules{}里添加如下代码(这里的MyProject01是我的项目名称):

public class MyProject01 : ModuleRules
{
    string OPENCV_VERSION = "455";

    private string ThirdPartyPath
    {
        get
        {
            return Path.GetFullPath(Path.Combine(ModuleDirectory, "../../ThirdParty/"));
        }
    }

    public bool LoadOpenCV(ReadOnlyTargetRules Target)
    {
        // only set up for Win64
        bool isLibrarySupported = false;

        // Create OpenCV Path 
        string OpenCVPath = Path.Combine(ThirdPartyPath, "OpenCV");

        // Get Library Path 
        string LibPath = "";
        bool isdebug = Target.Configuration == UnrealTargetConfiguration.Debug;
        if (Target.Platform == UnrealTargetPlatform.Win64)
        {
            LibPath = Path.Combine(OpenCVPath, "Libraries", "Win64");
            isLibrarySupported = true;
        }
        else
        {
            string Err = string.Format("{0} dedicated server is made to depend on {1}. We want to avoid this, please correct module dependencies.", Target.Platform.ToString(), this.ToString());
            System.Console.WriteLine(Err);
        }

        if (isLibrarySupported)
        {
            //Add Include path 
            PublicIncludePaths.AddRange(new string[] { Path.Combine(OpenCVPath, "Includes") });
            //Add Static Libraries
            PublicAdditionalLibraries.Add(Path.Combine(LibPath, "opencv_world" + OPENCV_VERSION + ".lib"));
            //Add Dynamic Libraries
            PublicDelayLoadDLLs.Add("opencv_world" + OPENCV_VERSION + ".dll");
            PublicDelayLoadDLLs.Add("opencv_videoio_ffmpeg" + OPENCV_VERSION + "_64.dll");
        }
        PublicDefinitions.Add(string.Format("WITH_OPENCV_BINDING={0}", isLibrarySupported ? 1 : 0));
        return isLibrarySupported;
    }

    public bool LoadFFmpeg(ReadOnlyTargetRules Target)
    {
        bool isLibrarySupported = false;
        string FFmpegPath = Path.Combine(ThirdPartyPath, "FFmpeg");
        string LibPath = "";

        if (Target.Platform == UnrealTargetPlatform.Win64)
        {
            LibPath = Path.Combine(FFmpegPath, "Libraries", "Win64");
            isLibrarySupported = true;
        }
        else
        {
            string Err = string.Format("{0} dedicated server is made to depend on {1}. We want to avoid this, please correct module dependencies.", Target.Platform.ToString(), this.ToString());
            System.Console.WriteLine(Err);
        }

        if (isLibrarySupported)
        {
            PublicIncludePaths.Add(Path.Combine(FFmpegPath, "includes"));
            PublicAdditionalLibraries.Add(Path.Combine(LibPath, "avcodec.lib"));
            PublicAdditionalLibraries.Add(Path.Combine(LibPath, "avdevice.lib"));
            PublicAdditionalLibraries.Add(Path.Combine(LibPath, "avfilter.lib"));
            PublicAdditionalLibraries.Add(Path.Combine(LibPath, "avformat.lib"));
            PublicAdditionalLibraries.Add(Path.Combine(LibPath, "avutil.lib"));
            PublicAdditionalLibraries.Add(Path.Combine(LibPath, "postproc.lib"));
            PublicAdditionalLibraries.Add(Path.Combine(LibPath, "swresample.lib"));
            PublicAdditionalLibraries.Add(Path.Combine(LibPath, "swscale.lib"));


            PublicDelayLoadDLLs.Add("avcodec-58.dll");
            PublicDelayLoadDLLs.Add("avdevice-58.dll");
            PublicDelayLoadDLLs.Add("avfilter-7.dll");
            PublicDelayLoadDLLs.Add("avformat-58.dll");
            PublicDelayLoadDLLs.Add("avutil-56.dll");
            PublicDelayLoadDLLs.Add("postproc-55.dll");
            PublicDelayLoadDLLs.Add("swresample-3.dll");
            PublicDelayLoadDLLs.Add("swscale-5.dll");
        }
        PublicDefinitions.Add(string.Format("WITH_FFMPEG_BINDING={0}", isLibrarySupported ? 1 : 0));
        return isLibrarySupported;
    }




    public MyProject01(ReadOnlyTargetRules Target) : base(Target)
    {
        bEnableUndefinedIdentifierWarnings = false; //避免Windows中的宏与UE4冲突

        PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;

        PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject", "Engine", "InputCore" });

        PrivateDependencyModuleNames.AddRange(new string[] { });

        // Uncomment if you are using Slate UI
        // PrivateDependencyModuleNames.AddRange(new string[] { "Slate", "SlateCore" });

        // Uncomment if you are using online features
        // PrivateDependencyModuleNames.Add("OnlineSubsystem");

        // To include OnlineSubsystemSteam, add it to the plugins section in your uproject file with the Enabled attribute set to true
        LoadOpenCV(Target);
        LoadFFmpeg(Target);
    }
}

4 如何使用

        打开UE4,把创建好的C++项目拖入场景中,我这里的C++名称为CameraReader。

        在世界大纲视图中选择C++类”CameraReader1”, 将创建好的”渲染目标”拖到”CameraReader1”的”Camera Render Target”中。查看电脑的ip,将”Dst Url”(在代码中自己设置的)替换为服务器ip。

        最后还需要打开zlm Media,进入V2023.3.25.windows文件夹,双击运行”start.bat” rtsp服务器,运行ue即可实时推流虚拟相机画面。

        拉流验证:用vlc;或者也可以使用cmd命令窗口:ffplay rtsp://172.30.164.52:554/live/test;也可以使用ffmpeg写代码拉流。

        以上就是使用ffmpeg对UE4的虚拟相机画面进行推流,只是大概介绍了一下步骤并附上了部分代码,有些具体细节并没有写,有需要的兄弟可以联系我,我会提供代码并教你实现。

        这是我在校给导师做的项目其中的视频流传输模块,虽然可能看起来比较简单,但却是我自己一步步踩坑之后实现的。感觉做完这个模块感觉自己的能力得到了提升,加强了我解决实际问题的能力。虽然做的过程中比较痛苦,但是也是做出来了。好了,就说这么多了。。。。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.youkuaiyun.com/qq_45942988/article/details/146102631

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值