一.基于寄存器与基于固件库的stm32 LED流水灯例子的编程方式差异
两者之间的差异主要体现在如下方面:
使用固件库:目前比较多的例程是使用固件库编写的。官方的例子也都采用固件库方式。特点就是简单,易于理解,资料多。如果你没有CortexM系列内核的开发基础,建议从固件库开始玩起。等有一定基础,或是特别需要时再用寄存器。
使用寄存器:想要深入理解CortexM3内核或是需要为了获得更好的可移植性,学习寄存器编程会比较有帮助。但是从专业的角度上看,寄存器更贴近底层,对外设的工作原理和运行机理会有更深的理解。
二.STM32的USART窗口通讯程序
实验前,我们需要准备环境和开发板,这里我们用到得是stm32f103指南者开发板,开发包下载。
下载地址:百度网盘下载地址
提取码:yong
用usb线把stm32开发板和电脑相连接,stm32端连接 ‘usb转串口’,打开stm32开关,小红灯亮起即可, 其中要求开发版上BOOT0和BOOT1接地,RXD接A9,TXD接A10,开发板买来默认就是这样,不需要改动
打开刚才下载的安装包,安装驱动
找到刚才安装包的mcuisp.exe
该处串口通信实现以下功能:
*设置波特率为115200,1位停止位,无校验位。
*STM32系统给上位机(win10)连续发送“hello windows!”,
*当上位机给stm32发送“Stop stm32!”后,stm32停止发送,并返回信息“收到”。
然后我们打开如下图中所示的之前下载好的的文件:
将stm32f10x_it.c中的串口中断服务函数修改为以下
代码如下:
int i=0;
uint8_t ucTemp[50];
void DEBUG_USART_IRQHandler(void)
{
if(USART_GetITStatus(DEBUG_USARTx,USART_IT_RXNE)!=RESET)
{
ucTemp[i] = USART_ReceiveData(USART1);
}
if(ucTemp[i] == '!')
{
if(ucTemp[i-1] == '2'&&ucTemp[i-2] == '3'&&ucTemp[i-3] == 'm'&&ucTemp[i-4] == 't'&&ucTemp[i-5] == 's'&&ucTemp[i-6] == ' ')
if(ucTemp[i-7] == 'p'&&ucTemp[i-8] == 'o'&&ucTemp[i-9] == 't'&&ucTemp[i-10] == 's')
{
printf("YES SIR!");
while(1);
}
}
i++;
}
再次修改main.c文件
#include "stm32f10x.h"
#include "bsp_usart.h"
void delay(uint32_t count)
{
while(count--);
}
int main(void)
{
USART_Config();
while(1)
{
printf("hello windows 10!\n");
delay(5000000);
}
}
编译完成,生成hex文件
打开多功能串口调试工具,打开串口,就能看见我们刚才stm32发给电脑的信息。
三.重温C语言程序里全局变量、局部变量、堆、栈等概念
一个由C/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 程序运行时由编译器自动分配,存放函数的参数值,局部变量的值等:
其操作方式类似于数据结构中的栈。
2、堆区(heap) — 在内存开辟另一块存储区域:
一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。
注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。
3、全局区(静态区)(static)—编译器编译时即分配内存:
全局变量和静态变量的存储是放在一块的,
初始化的全局变量和静态变量在一块区域,
未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。
程序结束后由系统释放
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放。
5、程序代码区—存放函数体的二进制代码。
ubunt下编程
1、首先我们先用vim命令创建一个test.c的文件并进入编写如下程序
源码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
void before()
{
}
char g_buf[16];
char g_buf2[16];
char g_buf3[16];
char g_buf4[16];
char g_i_buf[]="123";
char g_i_buf2[]="123";
char g_i_buf3[]="123";
void after()
{
}
int main(int argc, char **argv)
{
char l_buf[16];
char l_buf2[16];
char l_buf3[16];
static char s_buf[16];
static char s_buf2[16];
static char s_buf3[16];
char *p_buf;
char *p_buf2;
char *p_buf3;
p_buf = (char *)malloc(sizeof(char) * 16);
p_buf2 = (char *)malloc(sizeof(char) * 16);
p_buf3 = (char *)malloc(sizeof(char) * 16);
printf("g_buf: 0x%x\n", g_buf);
printf("g_buf2: 0x%x\n", g_buf2);
printf("g_buf3: 0x%x\n", g_buf3);
printf("g_buf4: 0x%x\n", g_buf4);
printf("g_i_buf: 0x%x\n", g_i_buf);
printf("g_i_buf2: 0x%x\n", g_i_buf2);
printf("g_i_buf3: 0x%x\n", g_i_buf3);
printf("l_buf: 0x%x\n", l_buf);
printf("l_buf2: 0x%x\n", l_buf2);
printf("l_buf3: 0x%x\n", l_buf3);
printf("s_buf: 0x%x\n", s_buf);
printf("s_buf2: 0x%x\n", s_buf2);
printf("s_buf3: 0x%x\n", s_buf3);
printf("p_buf: 0x%x\n", p_buf);
printf("p_buf2: 0x%x\n", p_buf2);
printf("p_buf3: 0x%x\n", p_buf3);
printf("before: 0x%x\n", before);
printf("after: 0x%x\n", after);
printf("main: 0x%x\n", main);
if (argc > 1)
{
strcpy(l_buf, argv[1]);
}
return 0;
}
2.编译生成可执行文件
gcc test.c -o test
3.执行命令./test
4.结果分析
栈存放区域是由高地址到低地址向下增长
堆存放区是由低地址到高地址像上增长
静态变量地址从高地址到低地址向下增长
函数地址是从低地址到高地址向上增长