Proof of Jensen‘s inequality

这篇博客详细证明了Jensen不等式,即对于凸函数f,满足f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2),并讨论了其逆情况——凹函数的情况。此外,还介绍了Jensen不等式的推广形式,适用于多个变量的情形,并通过数学归纳法证明了推广形式的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

the usual form of Jensen’s inequality

For a given convex function f f f, the below inequality is satisfied:
f ( t x 1 + ( 1 − t ) x 2 ) ≤ t f ( x 1 ) + ( 1 − t ) f ( x 2 ) f(tx_1+(1-t)x_2)\le tf(x_1)+(1-t)f(x_2) f(tx1+(1t)x2)tf(x1)+(1t)f(x2)

where t t t satisfies t ∈ [ 0 , 1 ] t\in [0,1] t[0,1].
(Note: the inequality is reversed if f f f is concave, f ( t x 1 + ( 1 − t ) x 2 ) ≥ t f ( x 1 ) + ( 1 − t ) f ( x 2 ) f(tx_1+(1-t)x_2)\ge tf(x_1)+(1-t)f(x_2) f(tx1+(1t)x2)tf(x1)+(1t)f(x2))

Proof1

We might as well define F ( x ) F(x) F(x) as:
F ( x ) = f ( t x 1 + ( 1 − t ) x ) − t f ( x 1 ) − ( 1 − t ) f ( x ) F(x)=f(tx_1+(1-t)x)- tf(x_1)-(1-t)f(x) F(x)=f(tx1+(1t)x)tf(x1)(1t)f(x)

where x 1 x_1 x1 is a real number and x ≥ x 1 x \ge x_1 xx1.

Then take the derivative of F ( x ) F(x) F(x) with respect to x x x :
F ′ ( x ) = ( 1 − t ) f ′ ( t x 1 + ( 1 − t ) x ) − ( 1 − t ) f ′ ( x ) = ( 1 − t ) ( f ′ ( x + t ( x 1 − x ) ) − f ′ ( x ) ) \begin{matrix} F'(x)&=& (1-t)f'(tx_1+(1-t)x)-(1-t)f'(x) \\ \\ &=& (1-t)(f'(x+t(x_1-x))-f'(x)) \end{matrix} F(x)==(1t)f(tx1+(1t)x)(1t)f(x)(1t)(f(x+t(x1x))f(x))

where x + t ( x 1 − x ) ≤ x x+t(x_1-x) \le x x+t(x1x)x.
According to the properties of convex functions, it can be seen that f ′ ( x + t ( x 1 − x ) ) ≤ f ′ ( x ) f'(x+t(x_1-x))\le f'(x) f(x+t(x1x))f(x) is satisfied.
So F ′ ( x ) ≤ 0 F'(x)\le 0 F(x)0,then:
F ( x ) ≤ F ( x 1 ) = f ( t x 1 + ( 1 − t ) x 1 ) − t f ( x 1 ) − ( 1 − t ) f ( x 1 ) = f ( x 1 ) − f ( x 1 ) = 0 \begin{matrix} F(x)\le F(x_1)&=&f(tx_1+(1-t)x_1)- tf(x_1)-(1-t)f(x_1) \\ \\ &=&f(x_1)-f(x_1) \\ \\ &=&0 \end{matrix} F(x)F(x1)===f(tx1+(1t)x1)tf(x1)(1t)f(x1)f(x1)f(x1)0

F ( x ) ≤ 0 f ( t x 1 + ( 1 − t ) x ) − t f ( x 1 ) − ( 1 − t ) f ( x ) ≤ 0 f ( t x 1 + ( 1 − t ) x ) ≤ t f ( x 1 ) − ( 1 − t ) f ( x ) \begin{matrix} F(x)&\le& 0 \\ \\ f(tx_1+(1-t)x)- tf(x_1)-(1-t)f(x)&\le& 0 \\ \\ f(tx_1+(1-t)x)&\le& tf(x_1)-(1-t)f(x) \end{matrix} F(x)f(tx1+(1t)x)tf(x1)(1t)f(x)f(tx1+(1t)x)00tf(x1)(1t)f(x)
Figure 1

the generalized form of Jensen’s inequality

f ( t 1 x 1 + t 2 x 2 + . . . + t n x n ) ≤ t 1 f ( x 1 ) + t 2 f ( x 2 ) + . . . + t n f ( x n ) f(t_1x_1+t_2x_2+...+t_nx_n)\le t_1f(x_1)+t_2f(x_2)+...+t_nf(x_n) f(t1x1+t2x2+...+tnxn)t1f(x1)+t2f(x2)+...+tnf(xn)

where t 1 , t 2 . . . t n t_1,t_2...t_n t1,t2...tn are nonnegative real number such that ∑ i n t i = 1 \sum_i^nt_i=1 inti=1.

When n = 2 n=2 n=2, the generalized form become to the usual form.

Proof2

Suppose the equation holds when n = k n=k n=k, that is, f ( t 1 x 1 + t 2 x 2 + . . . + t k x k ) ≤ t 1 f ( x 1 ) + t 2 f ( x 2 ) + . . . + t k f ( x k ) f(t_1x_1+t_2x_2+...+t_kx_k)\le t_1f(x_1)+t_2f(x_2)+...+t_kf(x_k) f(t1x1+t2x2+...+tkxk)t1f(x1)+t2f(x2)+...+tkf(xk).

Then when n = k + 1 n=k+1 n=k+1,
t 1 f ( x 1 ) + t 2 f ( x 2 ) + . . . + t k + 1 f ( x k + 1 ) = ( 1 − t k + 1 ) { 1 ( 1 − t k + 1 ) [ t 1 f ( x 1 ) + t 2 f ( x 2 ) + . . . + t k f ( x k ) ] } + t k + 1 f ( x k + 1 ) = ( 1 − t k + 1 ) [ t 1 ( 1 − t k + 1 ) f ( x 1 ) + t 2 ( 1 − t k + 1 ) f ( x 2 ) + . . . + t k ( 1 − t k + 1 ) f ( x k ) ] + t k + 1 f ( x k + 1 ) ≥ ( 1 − t k + 1 ) f ( t 1 ( 1 − t k + 1 ) x 1 + t 2 ( 1 − t k + 1 ) x 2 + . . . + t k ( 1 − t k + 1 ) x k ) + t k + 1 f ( x k + 1 ) \begin{matrix} t_1f(x_1)+t_2f(x_2)+...+t_{k+1}f(x_{k+1}) &=&(1-t_{k+1})\{\frac{1}{(1-t_{k+1})}[t_1f(x_1)+t_2f(x_2)+...+t_kf(x_k)]\}+t_{k+1}f(x_{k+1}) \\ \\ &=&(1-t_{k+1})[\frac{t_1}{(1-t_{k+1})}f(x_1)+\frac{t_2}{(1-t_{k+1})}f(x_2)+...+\frac{t_k}{(1-t_{k+1})}f(x_k)]+t_{k+1}f(x_{k+1}) \\ \\ &\ge &(1-t_{k+1})f(\frac{t_1}{(1-t_{k+1})}x_1+\frac{t_2}{(1-t_{k+1})}x_2+...+\frac{t_k}{(1-t_{k+1})}x_k)+t_{k+1}f(x_{k+1}) \\ \\ \end{matrix} t1f(x1)+t2f(x2)+...+tk+1f(xk+1)==(1tk+1){(1tk+1)1[t1f(x1)+t2f(x2)+...+tkf(xk)]}+tk+1f(xk+1)(1tk+1)[(1tk+1)t1f(x1)+(1tk+1)t2f(x2)+...+(1tk+1)tkf(xk)]+tk+1f(xk+1)(1tk+1)f((1tk+1)t1x1+(1tk+1)t2x2+...+(1tk+1)tkxk)+tk+1f(xk+1)

We might as well define u 1 = t 1 ( 1 − t k + 1 ) x 1 + t 2 ( 1 − t k + 1 ) x 2 + . . . + t k ( 1 − t k + 1 ) x k u_1=\frac{t_1}{(1-t_{k+1})}x_1+\frac{t_2}{(1-t_{k+1})}x_2+...+\frac{t_k}{(1-t_{k+1})}x_k u1=(1tk+1)t1x1+(1tk+1)t2x2+...+(1tk+1)tkxk and u 2 = x k + 1 u_2=x_{k+1} u2=xk+1.

From the Proof1, we can get f ( ( 1 − t k + 1 ) u 1 + t x + 1 u 2 ) ≤ ( 1 − t k + 1 ) f ( u 1 ) + t k + 1 f ( u 2 ) f((1-t_{k+1})u_1+t_{x+1}u_2)\le (1-t_{k+1})f(u_1)+t_{k+1}f(u_2) f((1tk+1)u1+tx+1u2)(1tk+1)f(u1)+tk+1f(u2).

t 1 f ( x 1 ) + t 2 f ( x 2 ) + . . . + t k + 1 f ( x k + 1 ) ≥ ( 1 − t k + 1 ) f ( u 1 ) + t k + 1 f ( u 2 ) ≥ f ( ( 1 − t k + 1 ) u 1 + t x + 1 u 2 ) = f ( t 1 x 1 + t 2 x 2 + . . . + t n x n ) t_1f(x_1)+t_2f(x_2)+...+t_{k+1}f(x_{k+1})\ge(1-t_{k+1})f(u_1)+t_{k+1}f(u_2) \ge f((1-t_{k+1})u_1+t_{x+1}u_2)=f(t_1x_1+t_2x_2+...+t_nx_n) t1f(x1)+t2f(x2)+...+tk+1f(xk+1)(1tk+1)f(u1)+tk+1f(u2)f((1tk+1)u1+tx+1u2)=f(t1x1+t2x2+...+tnxn)

We deduce the inequality is true for n + 1 n+1 n+1, and we have proved the correctness for n = 2 n=2 n=2, by the principal of mathematical induction it follows that the result is also true for all integer n n n greater than 2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值