背包
01背包acwing2
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
int v[N], w[N], f[N][N];
int main(){
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d%d", &v[i], &w[i]);
//循环物品
for (int i = 1; i <= n; i ++ ){
//循环体积
for (int j = 0; j <= m; j ++ ){
f[i][j] = f[i - 1][j];
if(j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
}
printf("%d", f[n][m]);
}
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
int v[N], w[N], f[N];
int main(){
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d%d", &v[i], &w[i]);
//循环物品
for (int i = 1; i <= n; i ++ ){
//循环体积
for (int j = m; j >= 0; j -- ){
if(j >= v[i]) f[j] = max(f[j], f[j - v[i]] + w[i]);
}
}
printf("%d", f[m]);
}
acwing3完全背包问题
未优化版,超时
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
int v[N], w[N], f[N][N];
int main(){
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d%d", &v[i], &w[i]);
//循环物品
for (int i = 1; i <= n; i ++ ){
//循环体积
for (int j = 0; j <= m; j ++ ){
for (int k = 0; k * v[i] <= j; k ++ ){
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
}
}
}
printf("%d", f[n][m]);
}
优化版
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
int v[N], w[N], f[N][N];
int main(){
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d%d", &v[i], &w[i]);
//循环物品
for (int i = 1; i <= n; i ++ ){
//循环体积
for (int j = 0; j <= m; j ++ ){
f[i][j] = f[i - 1][j];
if(j >= v[i])f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
}
}
printf("%d", f[n][m]);
}
再度优化
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
int v[N], w[N], f[N];
int main(){
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d%d", &v[i], &w[i]);
//循环物品
for (int i = 1; i <= n; i ++ ){
//循环体积
for (int j = v[i]; j <= m; j ++ ){
f[j] = max(f[j], f[j - v[i]] + w[i]);
}
}
printf("%d", f[m]);
}
acwing4多重背包1
跟完全背包问题一样,不过多了数量限制
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int v[N], w[N], s[N], f[N][N];
int main(){
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d%d%d", &v[i], &w[i], &s[i]);
//循环物品
for (int i = 1; i <= n; i ++ ){
//循环体积
for (int j = 0; j <= m; j ++ ){
f[i][j] = f[i - 1][j];
//循环决策
for (int k = 0; k <= s[i] && k * v[i] <= j; k ++ ){
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
}
}
}
printf("%d", f[n][m]);
}
acwing5多重背包2
如果仍然不是很能理解的话,取这样一个例子:要求在一堆苹果选出n个苹果。我们传统的思维是一个一个地去选,选够n个苹果就停止。这样选择的次数就是n次
二进制优化思维就是:现在给出一堆苹果和10个箱子,选出n个苹果。将这一堆苹果分别按照1,2,4,8,16,…512分到10个箱子里,那么由于任何一个数字x ∈[1,1024]
都可以从这10个箱子里的苹果数量表示出来,但是这样选择的次数就是 ≤10次 。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 12010, M = 2010;
int v[N], w[N];
int f[M];
int main(){
int n, m;
scanf("%d%d", &n, &m);
int cnt = 0;
for (int i = 1; i <= n; i ++ ){
int a, b, s;
scanf("%d%d%d", &a, &b, &s);
int k = 1;
while (k <= s){
cnt ++;
v[cnt] = a * k;
w[cnt] = b * k;
s -= k;
k *= 2;
}
if(s > 0){
cnt ++;
v[cnt] = a * s;
w[cnt] = b * s;
}
}
n = cnt;
for (int i = 1; i <= n; i ++ ){
for (int j = m; j >= v[i]; j -- ){
f[j] = max(f[j], f[j - v[i]] + w[i]);
}
}
printf("%d", f[m]);
}
awing9分组背包
跟完全背包很像
循环物品组,循环体积, 循环物品
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int v[N][N], w[N][N], s[N];
int f[N][N];
int main(){
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ){
scanf("%d", &s[i]);
for (int j = 1; j <= s[i]; j ++ ){
scanf("%d%d", &v[i][j], &w[i][j]);
}
}
//循环物品组
for (int i = 1; i <= n; i ++ ){
//循坏体积
for (int j = 0; j <= m; j ++ ){
f[i][j] = f[i - 1][j];
//循环组内的物品
for (int k = 0; k <= s[i]; k ++ ){
if(j >= v[i][k]) f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]);
}
}
}
printf("%d", f[n][m]);
}
线性dp
acwing898数字三角形
状态表示:f[i][j]表示从顶层走到第i行第j列的最大值
状态转移:
右上:f[i][j] = max(f[i][j], f[i-1][j]+w[i][j])
左上:f[i][j]= max(f[i][j], f[i-1][j -1] + w[i][j])
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 510;
int w[N][N], f[N][N];
int main(){
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ){
for (int j = 1; j <= i; j ++ ){
scanf("%d", &w[i][j]);
}
}
//处理负数
memset(f, -0x3f, sizeof f);
f[1][1] = w[1][1];
for (int i = 2; i <= n; i ++ ){
for (int j = 1; j <= i; j ++ ){
f[i][j] = max(f[i - 1][j - 1], f[i - 1][j]) + w[i][j];
}
}
int res = -0x3f3f3f3f;
for (int i = 1; i <= n; i ++ ){
res = max(res, f[n][i]);
}
printf("%d", res);
}
acwing895最长上升子序列
状态表示:
f[i]表示以a[i]结尾的最长上升子序列
状态转移:
f
[
i
]
=
m
a
x
(
f
[
i
]
,
f
[
j
]
+
1
)
(
a
[
j
]
<
a
[
i
]
,
j
∈
[
1
,
i
−
1
]
)
f[i] = max(f[i], f[j]+ 1)(a[j]<a[i],j \in[1,i-1])
f[i]=max(f[i],f[j]+1)(a[j]<a[i],j∈[1,i−1])
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e3 + 10;
int a[N], f[N];
int main()
{
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) {
scanf("%d", &a[i]);
f[i] = 1;
}
int res = 0;
for (int i = 1; i <= n; i ++ ){
for (int j = 1; j < i; j ++ ){
if(a[j] < a[i]) f[i] = max(f[i], f[j] + 1);
}
res = max(res, f[i]);
}
printf("%d", res);
}
acwing896最长上升子序列2
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int a[N], q[N];
int main(){
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
int len = 0;
q[0] = -2e9;
for (int i = 1; i <= n; i ++ ){
//找a[i]的前驱
int l = 0, r = len;
while (l < r){
int mid = l + r + 1 >> 1;
if(q[mid] < a[i]) l = mid; else r = mid - 1;
}
q[l + 1] = a[i];
len = max(len, l + 1);
}
printf("%d", len);
}
最长公共子序列
状态表示:
f[i][j]表示字符串以a中前i个字母字符串b中以前j个字母组成的最长公共子序列的长度
状态转移:
可分为2种情况:
- a[i]==b[i]
如a:zxc,b:zxc,f[i][j]=f[i-1][j-1]+1 - a[i]!=b[i]
如a:zxvc b:zxc,f[i][j]=f[i-1][j]或f[i][j-1]
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
int f[N][N];
char a[N], b[N];
int main(){
int n, m;
scanf("%d%d", &n, &m);
scanf("%s%s", a + 1, b + 1);
for (int i = 1; i <= n; i ++ ){
for (int j = 1; j <= m; j ++ ){
if(a[i] == b[j]) f[i][j] = f[i - 1][j - 1] + 1;
else f[i][j] = max(f[i - 1][j], f[i][j - 1]);
}
}
printf("%d", f[n][m]);
}
acwing902
状态表示:
f[i][j]:把a中的前i个字母变为b中的前j个字母的最少操作数
状态转移:
对当前的a[i],有4种操作
- 添加,如a:g b:gh,则f[i][j]=f[i][j-1]+1,因为a的前i个已经和b的前j-1个相同
- 删除,如a:hkl b:hk,则f[i][j]=f[i-1][j] + 1,说明没有删除前a中前i-1已经和b的前j个相同
- 替换,如a:hj b:hk,则f[i][j]=f[i-1][j-1]+1,a中前i-1已经和b的前j-1个相同
- 什么都不做(摆烂),如a:ukl b:ukl,f[i][j]=f[i-1][j-1],a中第i个字母和b中第j个字母相同且前i-1,j-1也相同
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
char a[N], b[N];
int f[N][N];
int main(){
int n, m;
scanf("%d", &n);
scanf("%s", a + 1);
scanf("%d", &m);
scanf("%s", b + 1);
int f[N][N];
//若a长度为i,b长度为0,则需要进行i次删除操作
for (int i = 0; i <= n; i ++ ) f[i][0] = i;
//若a长度为0,b长度为i,则需要进行i次添加操作
for (int i = 0; i <= m; i ++ ) f[0][i] = i;
for (int i = 1; i <= n; i ++ ){
for (int j = 1; j <= m; j ++ ){
f[i][j] = min(f[i-1][j] + 1, f[i][j-1] + 1);
if(a[i] == b[j]) f[i][j] = min(f[i][j], f[i - 1][j - 1]);
else f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1);
}
}
printf("%d", f[n][m]);
}
区间dp
acwing282
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 310;
int f[N][N], s[N];
int main(){
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) {
scanf("%d", &s[i]);
s[i] += s[i - 1];
}
//区间dp模板,枚举长度,枚举左右端点,枚举决策
//只有1堆时不用合并,代价为0
for (int len = 2; len <= n; len ++ ){
//i是左端点,j是右端点,注意len是石头堆数,所以j=i+len-1
for (int i = 1; i + len - 1 <= n; i ++ ){
int j = i + len - 1;
f[i][j] = 1e9;
//以第k堆石头为分界线,要把石头分成两堆,所以k最大为j-1
for (int k = i; k < j; k ++ ){
f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j] + s[j] - s[i - 1]);
}
}
}
//根据f[i][j]的定义,从第1堆合并到第n堆石头的代价的最小值
cout << f[1][n];
}
计数类dp
acwing900
思路:把1,2,3,… ,n看做背包问题的物品,这n个物品使用次数无限制,问恰好能装满总体积为n的背包的总方案数
状态表示:f[i][j]表示前i个物品体积恰好是j的方案数
状态转移:f[i][j]= f[i-1][j] + f[i - 1][j - i]
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 1010, mod = 1e9 + 7;
int f[N][N];
int main(){
int n;
scanf("%d", &n);
//容量为0时,前 i 个物品全不选也是一种方案
for (int i = 0; i <= n; i ++) {
f[i][0] = 1;
}
//循环物品
for (int i = 1; i <= n; i ++ ){
//循坏体积
for (int j = 0; j <= n; j ++ ){
f[i][j] = f[i - 1][j] ;
if(j >= i) f[i][j] = ((LL)f[i][j] + f[i][j - i]) % mod;
}
}
printf("%d", f[n][n]);
}
状态压缩dp
acwing291
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 12, M = 1 << N;
typedef long long LL;
//f[i][j], 前i-1列已经摆好,且从第i-1列伸到第i列的所有方案
//j是个二进制数,表示哪一行的方块是横着放的
LL f[N][M];
//记录该列连续的0有奇数个还是偶数个
bool st[M];
vector<int> state[M];
int main()
{
int n, m;
while (true){
scanf("%d%d", &n, &m);
if(n == 0 || m == 0) break;
//预处理1,每一列不能有奇数个连续的0
for (int i = 0; i < 1 << n; i ++ ){
//连续的0的个数
int cnt = 0;
bool isValid = true;
//遍历i的二进制表示下的每一位,从上到下
for (int j = 0; j < n; j ++ ){
//当前位置为1
if(i >> j & 1 == 1){
//当前位置之前连续0的个数如果为奇数,不合法
if(cnt & 1 == 1){
isValid = false;
break;
}
//1之前有偶数个零,合法,重置计数器
cnt = 0;
} else cnt ++;
}
//判断最下面连续0的情况
if(cnt & 1 == 1) isValid = false;
st[i] = isValid;
}
//预处理2,判断第i-2列和第i-1列伸出的是否冲突
for (int j = 0; j < 1 << n; j ++ ){
//清空的是上一个输入的数据的状态
state[j].clear();
for (int k = 0; k < 1 << n; k ++ ){
if((j & k) == 0 && st[j | k]){
state[j].push_back(k);
}
}
}
//dp开始
//清空的是上一个输入的数据的状态
memset(f, 0, sizeof f);
f[0][0] = 1;
for (int i = 1; i <= m; i ++ ){
for (int j = 0; j < 1 << n; j ++ ){
for(auto k : state[j]) f[i][j] += f[i - 1][k];
}
}
printf("%lld\n", f[m][0]);
}
}
树形dp
acwing285
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 6010;
//高兴度
int w[N];
//st标记有没有父节点
int st[N], f[N][2];
//邻接表存树
int e[N], ne[N], h[N], idx;
// 添加一条边a->b
void add(int a, int b){
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
void dfs(int u){
//此节点去了,至少有自己的高兴度
f[u][1] = w[u];
//此节不去,没有高兴度
f[u][0] = 0;
for (int i = h[u]; i != -1; i = ne[i] ){
int j = e[i];
//由于要用到子节点的信息,先进行递归
dfs(j);
//此节点去了,那么它的子节点都不会去
f[u][1] += f[j][0];
//此节点不去,子节点去与不去之间选个总高兴度最大的
f[u][0] += max(f[j][0], f[j][1]);
}
}
int main()
{
//初始化邻接表
idx = 0;
memset(h, -1, sizeof h);
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);
for (int i = 1; i < n; i ++ ){
int a, b;
scanf("%d%d", &a, &b);
add(b, a);
//a有父节点了,标记一下
st[a] = true;
}
//找根节点
int root = 1;
while (st[root]) root++;
dfs(root);
printf("%d", max(f[root][0], f[root][1]));
}