写在前面
此份代码可以在pycharm上运行,前提是已经安装tensorflow2.0gpu版本
import tensorflow as tf
import matplotlib.pyplot as plt
import glob
import os
import numpy as np
from tensorflow.keras import layers
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Restrict TensorFlow to only use the fourth GPU
tf.config.experimental.set_visible_devices(gpus[0], 'GPU')
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
image_path = glob.glob('E:\\deep_learning\\kaggle\\animeFaces\\data\\*.png')
# image_path = glob.glob('E:\\deep_learning\\kaggle\\train\\train\\*.jpg')
def load_preprosess_image(path):
image = tf.io.read_file(path)
# 对图片进行解码
image = tf.image.decode_png(image, channels=3)
image = tf.cast(image, tf.float32)
image = (image / 127.5) - 1
return image
image_ds = tf.data.Dataset.from_tensor_slices(image_path)
AUTOTUNE = tf.data.experimental.AUTOTUNE
image_ds = image_ds.map(load_preprosess_image, num_parallel_calls=AUTOTUNE)
BATCH_SIZE = 32
# BATCH_SIZE = 64
image_count = len(image_path)
image_ds = image_ds.shuffle(image_count).batch(BATCH_SIZE)
image_ds = image_ds.prefetch(AUTOTUNE)
def generator_model():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8 * 8 * 256, use_bias=False, input_shape=(100,)))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Reshape((8, 8, 256)))
model.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Conv2DTranspose(32, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(
tf.keras.layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
return model
generator = generator_model()
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
# plt.imshow((generated_image[0, :, :, :3] + 1) / 2)
def discriminator_model():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(32, (5, 5), strides=(2, 2), padding='same', input_shape=[64, 64, 3]))
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.GlobalAveragePooling2D())
model.add(tf.keras.layers.Dense(1024))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
return model
discriminator = discriminator_model()
decision = discriminator(generated_image)
# print(decision)
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-5)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-5)
# epochs = 800
EPOCHS = 300
noise_dim = 100
num_examples_to_generate = 4
seed = tf.random.normal([num_examples_to_generate, noise_dim])
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(6, 6))
for i in range(predictions.shape[0]):
plt.subplot(2, 2, i + 1)
plt.imshow((predictions[i, :, :, :] + 1) / 2)
plt.axis('off')
plt.show()
def train(dataset, epochs):
for epoch in range(epochs):
for image_batch in dataset:
train_step(image_batch)
print('.', end='')
print()
if epoch % 10 == 0:
generate_and_save_images(generator, epoch + 1, seed)
generate_and_save_images(generator, epochs, seed)
train(image_ds, EPOCHS)