np.seterr(divide=‘ignore‘, invalid=‘ignore‘)

这行代码用于设置 NumPy 中的错误处理方式。具体来说,它将在发生除零错误和无效操作错误时忽略这些错误,而不会引发异常。

解释一下参数的含义:

  • divide='ignore':表示在除零错误发生时忽略该错误。
  • invalid='ignore':表示在无效操作错误(例如零除以零或无效浮点数操作)发生时忽略该错误。

这样设置的效果是,当程序中执行除法操作导致除零或无效操作时,NumPy 将不会引发异常,而是继续执行,将结果视为特殊值(如 infnan)。

这种设置可能在一些情况下很有用,比如在数值计算中,当某些操作会导致除以零或者无效的数值操作时,如果您希望程序继续执行而不中断,可以使用这种方式来忽略这些错误。

import networkx as nx import numpy as np import pandas as pd import matplotlib.pyplot as plt import networkx as nx import random df=pd.read_csv("D:\级联失效\edges.csv") G=nx.from_pandas_edgelist(df,'from','to',create_using=nx.Graph()) nx.draw(G,node_size=300,with_labels=True) As=nx.adjacency_matrix(G) A=As.todense() def f(x): F=4*x*(1-x) return F n=len(A) r=2 ohxs=0.4 step=10 d=np.zeros([n,step]) for i in range(n): d[i,0]=np.sum(A[i]) x_intial=np.zeros([n,step]) for i in range(n): x_intial[i,0]=random.random() np.set_printoptions(precision=5) h_a=100 H=np.zeros([n,step]) D=np.zeros([n,step]) for i in range(n): Deg=0 for k in range(n): if k!=i: Deg=Deg+d[k,0] D[i,0]=Deg H[i,0]=d[i,0]/D[i,0]/h_a fail_scale=np.zeros(step) fail_scale[0]=1 node_rand_id=random.randint(0,n) r=2 x_intial[node_rand_id,0]=x_intial[node_rand_id,0]+r print(x_intial) fail_node=np.zeros(n) fail_node[node_rand_id]=1 print(fail_node) np.seterr(divide='ignore',invalid='ignore') for t in range(1,step): fail_node_id=[idx for (idx,val) in enumerate(fail_node) if val ==1] for i in range(n): sum=0 for j in range(n): sum = sum+A[i,j]*f(x_intial[j,t-1])/d[i] if i in fail_node_id: x_intial[i,t-1]=0 A[i,:]=0 A[:,i]=0 else: x_intial[i,t]=H[i,t-1]*abs((1-ohxs)*f(x_intial[i,t-1])+ohxs*sum) d[i,t]=np.sum(A[i]) Deg=0 for k in range(n): if k!=i: Deg=Deg+d[i,t] D[i,t]=Deg H[i,t]=d[i,t]/D[i,t]/h_a new_fail_id=[idx for (idx,val) in enumerate(x_intial[:,t]) if val>=1] fail_scale[t]=fail_scale[t-1]+len(new_fail_id) fail_node[new_fail_id]=1 x_intial[new_fail_id,t]=x_intial[new_fail_id,t]+r print(H[i,t]) print(fail_node) print(x_intial) plt.plot(fail_scale) plt.show()
06-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值