【机器学习算法实现】主成分分析(PCA)——基于python+numpy
@author:wepon
@blog:http://blog.youkuaiyun.com/u012162613/article/details/42177327
1、PCA算法介绍
主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理。一般我们获取的原始数据维度都很高,比如1000个特征,在这1000个特征中可能包含了很多无用的信息或者噪声,真正有用的特征才100个,那么我们可以运用PCA算法将1000个特征降到100个特征。这样不仅可以去除无用的噪声,还能减少很大的计算量。
PCA算法是如何实现的?
简单来说,就是将数据从原始的空间中转换到新的特征空间中,例如原始的空间是三维的(x,y,z),x、y、z分别是原始空间的三个基,我们可以通过某种方法,用新的坐标系(a,b,c)来表示原始的数据,那么a、b、c就是新的基,它们组成新的特征空间。在新的特征空间中,可能所有的数据在c上的投影都接近于0,即可以忽略,那么我们就可以直接用(a,b)来表示数据,这样数据就从三维的(x,y,z)降到了二维的(a,b)。
问题是如何求新的基(a,b,c)?
一般步骤是这样的:先对原始数据零均值化,然后求协方差矩阵,接着对协方差矩阵求特征向量和特征值,这些特征向量组成了新的特征空间。具体的细节,推荐Andrew Ng的网页教程:Ufldl 主成分分析 ,写得很详细。
2、PCA算法实现
>>> import numpy as np
(1)零均值化
def zeroMean(dataMat): meanVal=np.mean(dataMat,axis=0) #按列求均值,即求各个特征的均值 newData=dataMat-meanVal return newData,meanVal
(2)求协方差矩阵
newData,meanVal=zeroMean(dataMat) covMat=np.cov(newData,rowvar=0)
numpy中的cov函数用于求协方差矩阵,参数rowvar很重要!若rowvar=0,说明传入的数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。因为newData每一行代表一个样本,所以将rowvar设置为0。
(3)求特征值、特征矩阵
eigVals,eigVects=np.linalg.eig(np.mat(covMat))
(4)保留主要的成分[即保留值比较大的前n个特征]
eigValIndice=np.argsort(eigVals) #对特征值从小到大排序 n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标 n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量 lowDDataMat=newData*n_eigVect #低维特征空间的数据 reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据 return lowDDataMat,reconMat
代码中有几点要说明一下,首先argsort对特征值是从小到大排序的,那么最大的n个特征值就排在后面,所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】
#零均值化def zeroMean(dataMat): meanVal=np.mean(dataMat,axis=0) #按列求均值,即求各个特征的均值 newData=dataMat-meanVal return newData,meanValdef pca(dataMat,n): newData,meanVal=zeroMean(dataMat) covMat=np.cov(newData,rowvar=0) #求协方差矩阵,return ndarray;若rowvar非0,一列代表一个样本,为0,一行代表一个样本 eigVals,eigVects=np.linalg.eig(np.mat(covMat))#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量 eigValIndice=np.argsort(eigVals) #对特征值从小到大排序 n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标 n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量 lowDDataMat=newData*n_eigVect #低维特征空间的数据 reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据 return lowDDataMat,reconMat
3、选择主成分个数

def percentage2n(eigVals,percentage): sortArray=np.sort(eigVals) #升序 sortArray=sortArray[-1::-1] #逆转,即降序 arraySum=sum(sortArray) tmpSum=0 num=0 for i in sortArray: tmpSum+=i num+=1 if tmpSum>=arraySum*percentage: return num
def pca(dataMat,percentage=0.99): newData,meanVal=zeroMean(dataMat) covMat=np.cov(newData,rowvar=0) #求协方差矩阵,return ndarray;若rowvar非0,一列代表一个样本,为0,一行代表一个样本 eigVals,eigVects=np.linalg.eig(np.mat(covMat))#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量 n=percentage2n(eigVals,percentage) #要达到percent的方差百分比,需要前n个特征向量 eigValIndice=np.argsort(eigVals) #对特征值从小到大排序 n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标 n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量 lowDDataMat=newData*n_eigVect #低维特征空间的数据 reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据 return lowDDataMat,reconMat