整体模型理解
简单的卷积层无法实现更加准确的图像识别,因此我们引入Resnet:残差网络模型,在相比较其他模型后得出,Resnet:残差网络模型有更好的效果。
我们图像是输入是[b,3,224,224],经过 卷积操作,变为[b,256,3,3],在平展开变为[b,255*3*3]
,经过最后的线性层,
最终输出:torch.Size([b, num_class]),对应真实标签的num_class个分类,num_class=5
import torch
from torch import nn
from torch.nn import functional as F
"定义残差块,改变通道数,改变高宽[b,ch_in,h,w]=>[b.ou_ch,(h-3+stride+2)/stride,(w-3+stride+2)/stride]"
class ResBlk(nn.Module):
"""
resnet block
"""
def __init__(self, ch_in, ch_out, stride=1):
"""
:param ch_in:
:param ch_out:
"""
super(ResBlk, self).__init__()
#[b,ch_in,h,w]=>[b,ch_out,h,w]
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
#对小批量数据进行正则化处理
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(ch_out)
self.extra = nn.Sequential()
if ch_out != ch_in:
# [b, ch_in, h, w] => [b, ch_out, (h-1+stride)/stride, (w-1+stride)/stride]
self.extra = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
nn.BatchNorm2d(ch_out)
)
def forward(self, x):
"""
:param x: [b, ch, h, w]
:return:
"""
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
# short cut.
# extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
# element-wise add:
out = self.extra(x) + out
out = F.relu(out)
return out
"定义残差网络"
class ResNet18(nn.Module):
def __init__(self, num_class):
super(ResNet18, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=3, padding=0),
nn.BatchNorm2d(16)
)
# followed 4 blocks
# [b, 16, h, w] => [b, 32, h ,w]
self.blk1 = ResBlk(16, 32, stride=3)
# [b, 32, h, w] => [b, 64, h, w]
self.blk2 = ResBlk(32, 64, stride=3)
# # [b, 64, h, w] => [b, 128, h, w]
self.blk3 = ResBlk(64, 128, stride=2)
# # [b, 128, h, w] => [b, 256, h, w]
self.blk4 = ResBlk(128, 256, stride=2)
# [b, 256, 3, 3]
self.outlayer = nn.Linear(256*3*3, num_class)
def forward(self, x):
"""
:param x:
:return:
"""
x = F.relu(self.conv1(x)) #[b,16,74,74]
#print('conv1(x):',x.shape)
# [b, 64, h, w] => [b, 1024, h, w]
x = self.blk1(x) #[b,32,25,25]
#print('blk1(x):',x.shape)
x = self.blk2(x) #[b,64,9,9]
#print('blk2(x):',x.shape)
x = self.blk3(x) #[b,128,5,5]
#print('blk3(x):',x.shape)
x = self.blk4(x) #[b,256,3,3]
#print('blk4(x):',x.shape)
x = x.view(x.size(0), -1)
#print('flatten:',x.shape)
x = self.outlayer(x)
return x
def main():
blk = ResBlk(64, 128,3)
tmp = torch.randn(2, 64, 224, 224)
out = blk(tmp)
print('block:', out.shape)
model = ResNet18(5)
tmp = torch.randn(2, 3, 224, 224)
out = model(tmp)
print('resnet:', out.shape)
p = sum(map(lambda p:p.numel(), model.parameters()))
print('parameters size:', p)
if __name__ == '__main__':
main()
ResBlk块理解:
[b,ch_in,h,w]=>[b,ou_ch,(h-1+stride)/stride,(w-1+stride)/stride]
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
#对小批量数据进行正则化处理
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(ch_out)
上面代码的卷积层:改变通道数,改变高宽[b,ch_in,h,w]=>[b,ou_ch,(h-3+stride+2)/stride,(w-3+stride+2)/stride]"
self.extra = nn.Sequential()
if ch_out != ch_in:
# [b, ch_in, h, w] => [b, ch_out, (h-1+stride)/stride, (w-1+stride)/stride]
self.extra = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
nn.BatchNorm2d(ch_out)
)
上面代码的卷积层:改变通道数,改变高宽[b,ch_in,h,w]=>[b,ou_ch,(h-1+stride)/stride,(w-1+stride)/stride]"
其实这两段代码改变的图像通道数,高,宽是一样的方便用后续代码进行累加
out = self.extra(x) + out
图像的size改变流程如下