1:如何设计Class 加载图片转换data set 并输出成Totensor:以pokemon dataset为例
Download: pokemon data
链接:https://pan.baidu.com/s/1o1iblvQyfYw47bk4UPFpbA?pwd=8888
提取码:8888
#数据集:皮卡丘:234,超梦:239,杰尼龟:223,小火龙:238,妙蛙种子:234
import torch
import os,glob
import random,csv
from torch.utils.data import Dataset ,DataLoader
from PIL import Image
from torchvision import transforms
#自定义数据加载类
class Pokemon(Dataset):
def __init__(self,root,resize,mode): #root:文件所在目录,resize:图像分辨率调整一致,mode:当前类何功能
super(Pokemon,self).__init__()
self.root = root
self.resize = resize
self.name2label = {} #对每个加载的文件进行编码:'bulbasaur': 0, 'charmander': 1, 'mewtwo': 2, 'pikachu': 3, 'squirtle': 4
for name in sorted(os.listdir((os.path.join(root)))):#对指定root中的文件进行排序
if not os.path.isdir(os.path.join(root,name)):
continue
self.name2label[name] = len(self.name2label.keys())
print(self.name2label)
#images labels
self.images,self.labels = self.load_csv('images.csv') #load_csv要么先创建images.csv,要么直接读取images.csv,
if mode=='train':#train dataset 60% of ALL DATA
self.images = self.images[:int(0.6*len(self.images))]
self.labels = self.labels[:int(0.6*len(self.labels))]
elif mode=='validation':#val dataset 60%-80% of ALL DATA
self.images = self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]
self.labels = self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]
else :#test dataset 80%-100% of ALL DATA
self.images = self.images[int(0.8*len(self.images)):int(len(self.images))]
self.labels = self.labels[int(0.8*len(self.labels)):int(len(self.labels))]
# images[0]: D:\python pycharm learning\清华大佬课程\fisrt\pokemon\mewtwo\00000081.png
# #labels[0]:2
#images 还是图片的地址列表,需要__getitem__继续转换
# image,label 不能把所有图片全部加载到内存,可能会爆内存
def load_csv(self,filename):
#filename 不存在:生成filename
if not os.path.exists(os.path.join(self.root,filename)):
images = []
for name in self.name2label.keys():
# .../pokemen/mewtwo/00001.png 加载进images列表
# 实际上是加载每张图片的地址
images += glob.glob(os.path.join(self.root, name, '*.png'))
images += glob.glob(os.path.join(self.root, name, '*.jpg'))
images += glob.glob(os.path.join(self.root, name, '*.jpeg'))
print(len(images), images[0])
random.shuffle(images)
with open(os.path.join(self.root, filename), mode='w', newline='') as f:
writer = csv.writer(f)
for img in images: # .....\bulbasaur\00000000.png
name = img.split(os.sep)[-2] # 指:bulbasaur 图片真实类别
label = self.name2label[name]
# .....\bulbasaur\00000000.png , 0
writer.writerow([img, label])
print('writen into csv file:', filename)
#filename 存在:直接读取filename
images, labels = [], []
with open(os.path.join(self.root, filename)) as f:
reader = csv.reader(f)
for row in reader:
# '...pokemon\bulbasaur\00000000.png', 0
img, label = row
label = int(label)
images.append(img)
labels.append(label)
assert len(images) == len(labels)
return images,labels
def __len__(self,x_hat):
return len(self.images)
def denormalize(self,x_hat):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
#x_hat = (x-mean)
#x = x_hat*std +mean
#x:[c,h,w]
#mean:[3]=>[3,1,1]
mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1)
std = torch.tensor(std).unsqueeze(1).unsqueeze(1)
x = x_hat * std + mean
return x
def __getitem__(self, idx):
pass
#idx~[0~len(images)]
# self.iamges,self.labels
#images[0]: D:\python pycharm learning\清华大佬课程\fisrt\pokemon\mewtwo\00000081.png
# #labels[0]:2
img, label = self.images[idx],self.labels[idx]
tf = transforms.Compose([
lambda x:Image.open(x).convert('RGB'),#string image => image data
transforms.Resize((int(self.resize*1.25),int(self.resize*1.25))),#压缩到稍大
transforms.RandomRotation(20),#图片旋转,增加图片的复杂度,但是又不会使网络太复杂
transforms.CenterCrop(self.resize), #可能会有其他的底存在
transforms.ToTensor(),
transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])
#R mean:0.854,std:0.229
])
img = tf(img)
label = torch.tensor(label)
return img,label
def main():
import visdom # 启动 python -m visdom.server,http://localhost:8097
import time
viz = visdom.Visdom()
db = Pokemon('D:\python pycharm learning\清华大佬课程\\fisrt\pokemon',224,'train')
x,y = next(iter(db))
print('sample:',x.shape,y.shape,y)
viz.images(db.denormalize(x), win='sample_x', opts=dict(title='sample_x'))
#train,label= model.__getitem__(0)
#print('train[0]:',train.shape)
#print('label[0]:',label)
if __name__=='__main__':
main()
D:\Anaconda\envs\study\python.exe "D:\python pycharm learning\清华大佬课程\fisrt\pokemon1.py"
Setting up a new session...
{'bulbasaur': 0, 'charmander': 1, 'mewtwo': 2, 'pikachu': 3, 'squirtle': 4}
1167 D:\python pycharm learning\清华大佬课程\fisrt\pokemon\bulbasaur\00000000.png
writen into csv file: images.csv
sample: torch.Size([3, 224, 224]) torch.Size([]) tensor(3)
Process finished with exit code 0
但是作业只能加载一张图片,我们要实现深度学习需要加载Batchsize张图片进行学习
2:使用DataLoader加载器实现批量加载,并使用visdom 显示
#数据集:皮卡丘:234,超梦:239,杰尼龟:223,小火龙:238,妙蛙种子:234
import torch
import os,glob
import random,csv
from torch.utils.data import Dataset ,DataLoader
from PIL import Image
from torchvision import transforms
#自定义数据加载类
class Pokemon(Dataset):
def __init__(self,root,resize,mode): #root:文件所在目录,resize:图像分辨率调整一致,mode:当前类何功能
super(Pokemon,self).__init__()
self.root = root
self.resize = resize
self.name2label = {} #对每个加载的文件进行编码:'bulbasaur': 0, 'charmander': 1, 'mewtwo': 2, 'pikachu': 3, 'squirtle': 4
for name in sorted(os.listdir((os.path.join(root)))):#对指定root中的文件进行排序
if not os.path.isdir(os.path.join(root,name)):
continue
self.name2label[name] = len(self.name2label.keys())#keys返回列表当中的value,len计算列表长度
print(self.name2label)#根据文件顺序,以idx:文件名,vlaue:0,1,2,3,4,生成列表
#images labels
self.images,self.labels = self.load_csv('images.csv') #load_csv要么先创建images.csv,要么直接读取images.csv,
if mode=='train':#train dataset 60% of ALL DATA
self.images = self.images[:int(0.6*len(self.images))]
self.labels = self.labels[:int(0.6*len(self.labels))]
elif mode=='validation':#val dataset 60%-80% of ALL DATA
self.images = self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]
self.labels = self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]
else :#test dataset 80%-100% of ALL DATA
self.images = self.images[int(0.8*len(self.images)):int(len(self.images))]
self.labels = self.labels[int(0.8*len(self.labels)):int(len(self.labels))]
# images[0]: D:\python pycharm learning\清华大佬课程\fisrt\pokemon\mewtwo\00000081.png
# #labels[0]:2
#images 还是图片的地址列表,需要__getitem__继续转换
# image,label 不能把所有图片全部加载到内存,可能会爆内存
def load_csv(self,filename):#生成,读取filename文件
#filename 不存在:生成filename
if not os.path.exists(os.path.join(self.root,filename)):
images = []
for name in self.name2label.keys():
# .../pokemen/mewtwo/00001.png 加载进images列表
# 实际上是加载每张图片的地址
images += glob.glob(os.path.join(self.root, name, '*.png'))
images += glob.glob(os.path.join(self.root, name, '*.jpg'))
images += glob.glob(os.path.join(self.root, name, '*.jpeg'))
print(len(images), images[0])
random.shuffle(images)
with open(os.path.join(self.root, filename), mode='w', newline='') as f:
writer = csv.writer(f)
for img in images: # .....\bulbasaur\00000000.png
name = img.split(os.sep)[-2] # 指:bulbasaur 图片真实类别
label = self.name2label[name]#在name2label列表根据name找出对应的value:0,1...
# .....\bulbasaur\00000000.png , 0
writer.writerow([img, label])
print('writen into csv file:', filename)
#filename 存在:直接读取filename
images, labels = [], []
with open(os.path.join(self.root, filename)) as f:
reader = csv.reader(f)
for row in reader:
# '...pokemon\bulbasaur\00000000.png', 0
img, label = row
label = int(label)
images.append(img)
labels.append(label)
assert len(images) == len(labels)
return images,labels
def __len__(self):
return len(self.images)
def denormalize(self,x_hat):#对已经进行规范化处理的totensor,去除规范化
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
#x_hat = (x-mean)/std
#x = x_hat*std +mean
#x:[c,h,w]
#mean:[3]=>[3,1,1]
mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1)
std = torch.tensor(std).unsqueeze(1).unsqueeze(1)
x = x_hat * std + mean
return x
def __getitem__(self, idx):
pass
#idx~[0~len(images)]
# self.iamges,self.labels
#images[0]: D:\python pycharm learning\清华大佬课程\fisrt\pokemon\mewtwo\00000081.png
# #labels[0]:2
img, label = self.images[idx],self.labels[idx]
tf = transforms.Compose([
lambda x:Image.open(x).convert('RGB'),#string image => image data
transforms.Resize((int(self.resize*1.25),int(self.resize*1.25))),#压缩到稍大
transforms.RandomRotation(20),#图片旋转,增加图片的复杂度,但是又不会使网络太复杂
transforms.CenterCrop(self.resize), #可能会有其他的底存在
transforms.ToTensor(),
transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])
#R mean:0.854,std:0.229
])
img = tf(img)
label = torch.tensor(label)
#Pokemon类根据一个索引每次返回一个img(三位张量),一个label(0维张量)
return img,label #img,label打包成元组返回
def main():
import visdom # 启动 python -m visdom.server,http://localhost:8097
import time
viz = visdom.Visdom()
db = Pokemon('D:\python pycharm learning\清华大佬课程\\fisrt\pokemon',64,'train')
#x,y = next(iter(db))
#print('sample:',x.shape,y.shape,y)
#viz.images(db.denormalize(x), win='sample_x', opts=dict(title='sample_x'))
#DataLoader加载器按batch_size打乱所有依次在内存当中按批次顺序加载每次批次,
# 每个批次内含batch个Pokemon类返回的对象(元组,列表,字符串)
loader = DataLoader(db,batch_size=64,shuffle=True)
for x,y in loader:
viz.images(db.denormalize(x),nrow=8,win='batch',opts=dict(title='batch'))
viz.text(str(y.numpy()),win='label',opts=dict(title='batch-y'))
time.sleep(10)
if __name__=='__main__':
main()
3:如果数据集是安装二级目录分类,那可以使用
torchvision.datasets.ImageFolder()
进行快速的加载,相当于用这一条函数替代了前面的 Pokemon class,非常简洁实用
import visdom
import time
import torchvision
from torch.utils.data import DataLoader
from torchvision import transforms
def main():
viz = visdom.Visdom()
tf = transforms.Compose([
transforms.Resize((64,64)),
transforms.ToTensor(),
])
db = torchvision.datasets.ImageFolder(root='D:\python pycharm learning\清华大佬课程\\fisrt\pokemon',transform=tf)
loader = DataLoader(db,batch_size=32,shuffle=True)
for x, y in loader:
viz.images( x, nrow=8, win='batch', opts=dict(title='batch'))
viz.text(str(y.numpy()), win='label', opts=dict(title='batch-y'))
time.sleep(10)
if __name__ == '__main__':
main()
在visdom显示结果:
如果要知道文件是怎么分类的可以在main函数中使用如下代码
print(db.class_to_idx)
如下:
from torch.utils.data import DataLoader
import torchvision
from torchvision import transforms
import visdom
import time
def main():
viz = visdom.Visdom()
tf = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
])
db = torchvision.datasets.ImageFolder(root='D:\python pycharm learning\清华大佬课程\\fisrt\pokemon', transform=tf)
loader = DataLoader(db, batch_size=32, shuffle=True, num_workers=8) # 8个线程同时加速
print(db.class_to_idx)
for x, y in loader:
viz.images(x, nrow=8, win='batch', opts=dict(title='batch'))
viz.text(str(y.numpy()), win='label', opts=dict(title='batch-y'))
time.sleep(10)
if __name__ == '__main__':
main()
{'bulbasaur': 0, 'charmander': 1, 'mewtwo': 2, 'pikachu': 3, 'squirtle': 4}
使用torchvision.datasets.ImageFolder()函数只有在pokemon数据集的二级分类各子文件下的picture准确对应文件名的情况下才可以使用,否则会出现图片的label与图片对应错误的情况发生