import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input = torch.tensor([
[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]
],dtype=torch.float32)
input = torch.reshape(input,(-1,1,5,5))
print(input.shape)
data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(data,batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True) #不够3*3的边缘,要
# self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=False) #不够3*3的边缘,不要
def forward(self,input):
output = self.maxpool1(input)
return output
write = SummaryWriter("maxpool")
step = 0 #dataloader分好几个批次
for data in dataloader:
img,target = data
write.add_images("input", img, step) #add_images接受多个,add_image只接受一个
tudui = Tudui()
output = tudui(img)
write.add_images("output", output, step)
step = step+1
write.close()
#cmd输入 tensorboard --logdir=logs logs改成绝对路径
summarywriter 观看图片处理结果
最新推荐文章于 2024-11-29 15:18:37 发布