Prime Path
添加链接描述
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don’t know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on… Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033
1733
3733
3739
3779
8779
8179
The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.
Sample Input
3
1033 8179
1373 8017
1033 1033
Sample Output
6
7
0
题意:将一个素数变成另一个素数,且每次只能变一个数字,而且变成的数字也必须是素数,问最少要多少步
解题思路:首先是判断素数,可以用埃式筛法做一个素数表,方便查询,然后可以用BFS求最小步数
AC代码:
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cctype>
#include<cmath>
#include<cstring>
#include<sstream>
#include<set>
#include<map>
#include<queue>
#define maxn 10005
typedef long long ll;
using namespace std;
typedef pair<int,int> P;
int prime[maxn],ans,n;
bool is_prime[maxn];
int main()
{
ans=0;
for(int i=0; i<=maxn; i++) is_prime[i]=true;
is_prime[0]=is_prime[1]=false;
for(int i=2; i<=maxn; i++) //埃式筛法
{
if(is_prime[i])
{
prime[ans++]=i; //可以顺便把所有素数保存在数组中,本题其实不需要
for(int j=i*2; j<=maxn; j+=i) is_prime[j]=false;
}
}
cin>>n;
while(n--)
{
int a,b,sum;
scanf("%d%d",&a,&b);
queue<P> que; //pair函数和队列的连用
sum=0;
que.push(P(a,sum)); //保存当前数字和步数
int vis[10000];
memset(vis,0,sizeof(vis));
while(!que.empty())
{
P x=que.front();
if(x.first==b)
break;
que.pop();
vis[x.first]=1; //标记用过的数字,防止出现死循环
for(int i=0;i<=9;i++) //改变个位数字
{
int y=x.first/10*10+i;
if(is_prime[y]&&!vis[y])
que.push(P(y,x.second+1));
}
for(int i=0;i<=9;i++) //十位
{
int y=x.first%10+x.first/100*100+i*10;
if(is_prime[y]&&!vis[y])
que.push(P(y,x.second+1));
}
for(int i=0;i<=9;i++) //百位
{
int y=x.first%10+x.first%100/10*10+x.first/1000*1000+i*100;
if(is_prime[y]&&!vis[y])
que.push(P(y,x.second+1));
}
for(int i=1;i<=9;i++) //千位,注意不能为0
{
int y=x.first%1000+i*1000;
if(is_prime[y]&&!vis[y])
que.push(P(y,x.second+1));
}
}
if(que.empty())
printf("Impossible\n");
else
printf("%d\n",que.front().second);
}
return 0;
}
**如果有疑问或更好的方法欢迎大家留言( ̄︶ ̄)↗ **