设备管理
I/O设备的基本概念和分类
I/0设备就是可以将数据输入到计算机,或者可以接收计算机输出数据的外部设备,属于计算机中的硬件部件。
I/O控制器
I/O设备的机械部件主要用来执行具体I/0操作。
如我们看得见摸得着的鼠标/键盘的按钮:显示器的LED屏;移动硬盘的磁臂、磁盘盘面。
I/0设备的电子部件通常是一块插入主板扩充槽的印刷电路板。
CPU无法直接控制I/O设备的机械部件,因此I/0设备还要有一个电子部件作为CPU和I/O设备机械部件之间的“中介”,用于实现CPU对设备的控制。
I/O控制器的组成
- CPU与控制器的接口:用于实现CPU与控制器之间的通信。CPU通过控制线发出命令:通过地址线指明要操作的设备:通过数据线来取出(输入)数据,或放入(输出)数据
- I/O逻辑:负责接收和识别CPU的各种命令(如地址译码),并负责对设备发出命令。
- 控制器与设备的接口:用于实现控制器与设备之间的通信
值得注意的小细节:
①一个I/O控制器可能会对应多个设备;
②数据寄存器、控制寄存器、状态寄存器可能有多个(如:每个控制/状态寄存器对应一个 具体的设备),且这些寄存器都要有相应的地址,才能方便CPU操作。有的计算机会让这些寄存器占用内存地址的一部分,称为内存映像;另一些计算机则采用I/O专用地址,即寄存器独立编址。
内存映像vs寄存器独立编址
内存映像优点:简化了指令。可以采用对内存进行操作的指令来对控制器进行操作
寄存器独立编址缺点:需要设置专门的指令来实现对控制器的操作,不仅要指明寄存器的地址,计还要指明控制器的编号
I/O控制方式
需要注意的问题:
- 完成一次读/写操作的流程;
- CPU干预的频率;
- 数据传送的单位;
- 数据的流向;
- 主要缺点和主要优点
程序直接控制方式
完成一次读操作的流程:
CPU干预的频率:很频繁,I/O操作开始之前、完成之后需要CPU介入,并且在等待I/O完成的过程中CPU需要不断地轮询检查。
数据传送的单位:每次读/写一个字
数据的流向:读操作(数据输入):I/O设备->CPU->内存。写操作(数据输出):内存->CPU->I/O设备每个字的读/写都需要CPU的帮助
主要缺点和主要优点
优点:实现简单。在读/写指令之后,加上实现循环检查的一系列指令即可(因此才称为“程序直接控制方式”)
缺点:CPU和I/O设备只能串行工作,CPU需要一直轮询检查,长期处于“忙等”状态 ,CPU利用率低。
中断驱动方式
引入中断机制。由于I/O设备速度很慢,因此在CPU发出读/写命令后,可将等待I/O的进程阻塞,先切换到别的进程执行。当I/O完成后,控制器会向CPU发出一个中断信号,CPU检测到中断信号后,会保存当前进程的运行环境信息,转去执行中断处理程序处理该中断。处理中断的过程中,CPU从I/O控制器读一个字的数据传送到CPU寄存器,再写入主存。接着,CPU恢复等待I/O的进程(或其他进程)的运行环境,然后继续执行。
注意:
①CPU会在每个指令周期的末尾检查中断;
②中断处理过程中需要保存、恢复进程的运行环境,这个过程是需要一定时间开销的。可见,如果中断发生的频率太高,也会降低系统性能。
CPU干预的频率:每次I/O操作开始之前、完成之后需要CPU介入。等待I/O完成的过程中CPU可以切换到别的进程执行。
数据传送的单位:每次读/写一个字
数据的流向:读操作(数据输入):I/O设备->CPU->内存。写操作(数据输出):内存->CPU->I/O设备
主要缺点和主要优点
优点:与“程序直接控制方式”相比,在“中断驱动方式”中,I/O控制器会通过中断信号主动报告I/O已完成,CPU不再需要不停地轮询。CPU和I/O设备可并行工作,CPU利用率得到明显提升。
缺点:每个字在I/O设备与内存之间的传输,都需要经过CPU。而频繁的中断处理会消耗较多的CPU时间。
DMA方式(直接存储器存取)
与“中断驱动方式”相比,DMA方式( Direct Memory Access,直接存储器存取。主要用于块设备的I/O控制)有这样几个改进:
①数据的传送单位是“块”。不再是一个字、一个字的传送;
②数据的流向是从设备直接放入内存,或者从内存直接到设备。不再需要CPU作为“快递小哥”。
③仅在传送一个或多个数据块的开始和结束时,才需要CPU干预。
DR (Data Register,数据寄存器):暂存从设备到内存,或从内存到设备的数据。
MAR (Memory Address Register,内存地址寄存器):在输入时,MAR 表示数据应放到内存中的什么位置;输出时 MAR 表示要输出的数据放在内存中的什么位置。
DC (Data Counter,数据计数器):表示剩余要读/写的字节数。
CR(Command Register,命令/状态寄存器):用于存放CPU发来的I/O命令,或设备的状态信息。
CPU干预的频率:仅在传送一个或多个数据块的开始和结束时,才需要CPU干预。
数据传送的单位:每次读/写一个或多个块(注意:每次读写的只能是连续的多个块,且这些块读入内存后在内存中也必须是连续的)
数据的流向(不再需要经过CPU):读操作(数据输入):I/O设备->内存。写操作(数据输出):内存->I/O设备
主要缺点和主要优点
优点:数据传输以“块”为单位,CPU介入频率进一步降低。数据的传输不再需要先经过CPU再写入内存,数据传输效率进一步增加。CPU和I/O设备的并行性得到提升。
缺点:CPU每发出一条I/O指令,只能读/写一个或多个连续的数据块。如果要读/写多个离散存储的数据块,或者要将数据分别写到不同的内存区域时,CPU要分别发出多条I/O指令,进行多次中断处理才能完成。
通道控制方式
通道:一种硬件,可以理解为是 “弱鸡版的CPU”。通道可以识别并执行一系列通道指令。与CPU相比,通道可以执行的指令很单一,并且通道程序是放在主机内存中的,也就是说通道与CPU共享内存
CPU干预的频率:极低,通道会根据CPU的指示执行相应的通道程序,只有完成一组数据块的读/写后才需要发出中断信号,请求CPU干预。
数据传送的单位:每次读/写一组数据块
数据的流向(在通道的控制下进行):读操作(数据输入):I/O设备->内存。写操作(数据输出):内存->I/O设备
主要缺点和主要优点
缺点:实现复杂,需要专门的通道硬件支持
优点:CPU、通道、I/O设备可并行工作,资源利用率很高。
总结
I/O软件层次结构
用户层软件实现了与用户交互的接口,用户可直接使用该层提供的、与I/O操作相关的库函数对设备进行操作。用户层软件将用户请求翻译成格式化的I/O请求,并通过系统调用” 请求操作系统内核的服务
设备独立性软件,又称设备无关性软件。与设备的硬件特性无关的功能几乎都在这一层实现。
主要实现的功能:
①向上层提供统一的调用接口( 如read/write系统调用)
②设备的保护
③差错处理
④设备的分配与回收
⑤数据缓冲区管理
⑥建立逻辑设备名到物理设备名的映射关系;根据设备类型选择调用相应的驱动程序
操作系统系统可以采用两种方式管理逻辑设备表(LUT):
第一种方式,整个系统只设置一张LUT,这就意味着所有用户不能使用相同的逻辑设备名,因此这种方式只适用于单用户操作系统。
第二种方式,为每个用户设置一张LUT,各个用户使用的逻辑设备名可以重复,适用于多用户操作系统。系统会在用户登录时为其建立一个用户管理进程,而LUT就存放在用户管理进程的PCB中。
设备驱动程序
主要负责对硬件设备的具体控制,将上层发出的一系列命令(如read/write)转化成特定设备“能听得懂”的一系列操作。包括设置设备寄存器;检查设备状态等
不同设备的内部硬件特性也不同,这些特性只有厂家才知道,因此厂家须提供与设备相对应的驱动程序,CPU执行驱动程序的指令序列,来完成设置设备寄存器,检查设备状态等工作
中断处理程序
当I/O任务完成时,I/O控制器会发送一个中断信号,系统会根据中断信号类型找到相应的中断处理程序并执行。中断处理程序的处理流程如下:
I/O核心子系统
注:假脱机技术(SPOOLing 技术)需要请求“磁盘设备”的设备独立性软件的服务,因此一般来说假脱机技术是在用户层软件实现的。但是一般又将假脱机技术归为“I/O核心子系统”的功能
I/O调度:用某种算法确定一个好的顺序来处理各个I/O请求。
如:磁盘调度(先来先服务算法、最短寻道优先算法、SCAN算法、C-SCAN算法、LOOK算法、C-LOOK算法)。当多个磁盘I/O请求到来时,用某种调度算法确定满足I/O请求的顺序。同理,打印机等设备也可以用先来先服务算法、优先级算法、短作业优先等算法来确定I/O调度顺序。
操作系统需要实现文件保护功能,不同的用户对各个文件有不同的访问权限(如:只读、读和写等)。
在UNIX系统中,设备被看做是一种特殊的文件,每个设备也会有对应的FCB。当用户请求访问某个设备时,系统根据FCB中记录的信息来判断该用户是否有相应的访问权限,以此实现“设备保护”的功能。
假脱机技术(SPOOLing)
“假脱机技术”,又称“SPOOLing 技术”是用软件的方式模拟脱机技术。 SPOOLing 系统的组成如下:
“输入进程”模拟脱机输入时的外围控制机
“输出进程”模拟脱机输出时的外围控制机
要实现SPOOLing 技术,必须要有多道程序技术的支持。系统会建立 “输入进程”和 “输出进程”。
共享打印机原理分析
独占式设备——只允许各个进程串行使用的设备。一段时间内只能满足一个进程的请求。
共享设备——允许多个进程“同时”使用的设备(宏观上同时使用,微观上可能是交替使用)。可以同时满足多个进程的使用请求。
当多个用户进程提出输出打印的请求时,系统会答应它们的请求,但是并不是真正把打印机分配给他们,而是由假脱机管理进程为每个进程做两件事:
(1)在磁盘输出井中为进程申请一个空闲缓冲区(也就是说,这个缓冲区是在磁盘上的),并将要打印的数据送入其中;
(2)为用户进程申请一张空白的打印请求表,并将用户的打印请求填入表中(其实就是用来说明用户的打印数据存放位置等信息的),再将该表挂到假脱机文件队列上。当打印机空闲时,输出进程会从文件队列的队头取出一张打印请求表,并根据表中的要求将要打印的数据从输出井传送到输出缓冲区,再输出到打印机进行打印。用这种方式可依次处理完全部的打印任务
虽然系统中只有一个台打印机,但每个进程提出打印请求时,系统都会为在输出井中为其分配一个存储区(相当于分配了一个逻辑设备),使每个用户进程都觉得自己在独占一台打印机,从而实现对打印机的共享。
SPOOLing 技术可以把一台物理设备虚拟成逻辑上的多台设备,可将独占式设备改造成共享设备。
设备的分配与回收
设备分配时应该考虑的因素
- 设备的固有属性:
设备的固有属性可分为三种:独占设备、共享设备、虚拟设备。
独占设备——一个时段只能分配给一个进程(如打印机)
共享设备——可同时分配给多个进程使用(如磁盘),各进程往往是宏观上同时共享使用设备,而微观上交替使用。
虚拟设备——采用 SPOOLing 技术将独占设备改造成虚拟的共享设备,可同时分配给多个进程使用(如采用 SPOOLing 技术实现的共享打印机) - 设备分配算法:
先来先服务、优先级高者优先、短任务优先等 - 设备分配中的安全性:
从进程运行的安全性上考虑,设备分配有两种方式:
安全分配方式:为进程分配一个设备后就将进程阻塞,本次I/O完成后才将进程唤醒。(eg:考虑进程请求打印机打印输出的例子)一个时段内每个进程只能使用一个设备。优点:破坏了“请求和保持”条件,不会死锁。缺点:对于一个进程来说,CPU和I/O设备只能串行工作
不安全分配方式:进程发出I/O请求后,系统为其分配I/O设备,进程可继续执行,之后还可以发出新的I/O请求。只有某个I/O请求得不到满足时才将进程阻塞。一个进程可以同时使用多个设备。优点:进程的计算任务和I/O任务可以并行处理,使进程迅速推进。缺点:有可能发生死锁(死锁避免、死锁的检测和解除)
静态分配和动态分配
静态分配:进程运行前为其分配全部所需资源,运行结束后归还资源。破坏了“请求和保持”条件,不会发生死锁
动态分配:进程运行过程中动态申请设备资源
(详情见进程管理)
设备分配管理中的数据结构
设备控制表(DCT):系统为每个设备配置一张DCT,用于记录设备情况
控制器控制表(COCT):每个设备控制器都会对应一张COCT。操作系统根据COCT的信息对控制器进行操作和管理。
通道控制表(CHCT):每个通道都会对应一张CHCT。操作系统根据CHCT的信息对通道进行操作和管理。
系统设备表(SDT):记录了系统中全部设备的情况,每个设备对应一个表目。
设备分配的步骤
①根据进程请求的物理设备名查找SDT(注:物理设备名是进程请求分配设备时提供的参数)
②根据SDT找到DCT,若设备忙碌则将进程PCB挂到设备等待队列中,不忙碌则将设备分配给进程。
③根据DCT找到COCT,若控制器忙碌则将进程PCB挂到控制器等待队列中,不忙碌则将控制器分配给进程。
④根据COCT找到CHCT,若通道忙碌则将进程PCB挂到通道等待队列中,不忙碌则将通道分配给进程。
缺点:
①用户编程时必须使用“物理设备名”,底层细节对用户不透明,不方便编程
②若换了一个物理设备,则程序无法运行
③若进程请求的物理设备正在忙碌,则即使系统中还有同类型的设备,进程也必须阻塞等待
改进方法:建立逻辑设备名与物理设备名的映射机制,用户编程时只需提供逻辑设备名
①根据进程请求的逻辑设备名查找SDT(注:用户编程时提供的逻辑设备名其实就是“设备类型”)
②查找SDT,找到用户进程指定类型的、并且空闲的设备,将其分配给该进程。操作系统在逻辑设备表(LUT)中新增一个表项。
③根据DCT找到COCT,若控制器忙碌则将进程PCB挂到控制器等待队列中,不忙碌则将控制器分配给进程。
④根据COCT找到CHCT,若通道忙碌则将进程PCB挂到通道等待队列中,不忙碌则将通道分配给进程。
逻辑设备表(LUT)建立了逻辑设备名与物理设备名之间的映射关系。
某用户进程第一次使用设备时使用逻辑设备名向操作系统发出请求,操作系统根据用户进程指定的设备类型(逻辑设备名)查找系统设备表,找到一个空闲设备分配给进程,并在LUT中增加相应表项。
如果之后用户进程再次通过相同的逻辑设备名请求使用设备,则操作系统通过LUT表即可知道用户进程实际要使用的是哪个物理设备了,并且也能知道该设备的驱动程序入口地址。
逻辑设备表的设置问题:
整个系统只有一张LUT:各用户所用的逻辑设备名不允许重复,适用于单用户操作系统
每个用户一张LUT:不同用户的逻辑设备名可重复,适用于多用户操作系统
缓冲区管理
缓冲区是一个存储区域,可以由专门的硬件寄存器组成,也可利用内存作为缓冲区。
使用硬件作为缓冲区的成本较高,容量也较小,一般仅用在对速度要求非常高的场合(如存储器管理中所用的联想寄存器——快表,由于对页表的访问频率极高,因此使用速度很快的联想寄存器来存放页表项的副本)
一般情况下,更多的是利用内存作为缓冲区,“设备独立性软件”的缓冲区管理就是要组织管理好这些缓冲区
单缓冲
假设某用户进程请求某种块设备读入若干块的数据。若采用单缓冲的策略,操作系统会在主存中为其分配一个缓冲区(若没有特别说明,一个缓冲区的大小就是一个块)。
注意:当缓冲区数据非空时,不能往缓冲区冲入数据,只能从缓冲区把数据传出;当缓冲区为空时,可以往缓冲区冲入数据,但必须把缓冲区充满以后,才能从缓冲区把数据传出。
结论:采用单缓冲策略,处理一块数据平均耗时 Max(C, T)+M
双缓冲
假设某用户进程请求某种块设备读入若干块的数据。若采用双缓冲的策略,操作系统会在主存中为其分配两个缓冲区
假设初始状态为:工作区空,其中一个缓冲区满,另一个缓冲区空假设T>C+M
假设初始状态为:工作区空,其中一个缓冲区满,另一个缓冲区空假设T<C+M
采用双缓冲策略,处理一个数据块的平均耗时为 Max (T, C+M)
循环缓冲区
将多个大小相等的缓冲区链接成一个循环队列。
注:以下图示中,橙色表示已充满数据的缓冲区,绿色表示空缓冲区
缓冲池
缓冲池由系统中共用的缓冲区组成。这些缓冲区按使用状况可以分为:空缓冲队列、装满输入数据的缓冲队列(输入队列)、装满输出数据的缓冲队列(输出队列)。
另外,根据一个缓冲区在实际运算中扮演的功能不同,又设置了四种工作缓冲区:用于收容输入数据的工作缓冲区(hin)、用于提取输入数据的工作缓冲区(sin)、用于收容输出数据的工作缓冲区(hout)、用于提取输出数据的工作缓冲区(sout)
①输入进程请求输入数据:从空缓冲队列中取出一块作为收容输入数据的工作缓冲区(hin)。冲满数据后将缓冲区挂到输入队列队尾
②计算进程想要取得一块输入数据:从输入队列中取得一块冲满输入数据的缓冲区作为“提取输入数据的工作缓冲区(sin)”。缓冲区读空后挂到空缓冲区队列
③计算进程想要将准备好的数据冲入缓冲区:从空缓冲队列中取出一块作为“收容输出数据的工作缓冲区(hout)”。数据冲满后将缓冲区挂到输出队列队尾
④输出进程请求输出数据:从输出队列中取得一块冲满输出数据的缓冲区作为“提取输出数据的工作缓冲区(sout)”。缓冲区读空后挂到空缓冲区队列