Manacher模板基础题

本文深入解析了吉哥系列故事中的完美队形算法,通过Manacher算法求解最长回文队伍问题,队伍需从中间向两边递减。文章提供了详细的代码实现,包括初始化和Manacher算法的核心步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

吉哥系列故事——完美队形II HDU - 4513

【题目大意】

求最长回文队伍且队伍由中间向两边递减。

【思路】

和字符串一样的做法,在递推的时候增加判断条件:a[i-p[i]]<=a[i-p[i]+2]。

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<cmath>
#include<map>
#include<algorithm>
#include<string>
#include<string.h>
#include<set>
#include<queue>
#include<stack>
#include<functional>
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e5+10;
const int maxm = 1e6 + 10;
const int mod = 1e9+7;
const int INF = 0x3f3f3f3f;
using namespace std;
int s[maxn],str[maxn*2];
int Len[maxn*2];
int n;
void init()
{
    int len=n;
    str[0]=1,str[1]=0;
    int j=2;
    for(int i=0;i<len;i++)
    {
        str[j++]=s[i];
        str[j++]=0;
    }
    str[j]=2;
}

int manacher()
{
    init();
    int len=2*n+2;
    int maxlen=-1;
    int id,mx=0;
    for(int i=1;i<len;i++)
    {
        if(i<mx) Len[i]=min(Len[2*id-i],mx-i);
        else Len[i]=1;
        while(str[i-Len[i]]==str[i+Len[i]])
        {
            if(str[i-Len[i]]!='0'&&str[i-Len[i]]>str[i-Len[i]+2]) break;
            //判断是否递减
            Len[i]++;
        }
        if(mx<i+Len[i])
        {
            id=i;
            mx=i+Len[i];
        }
        maxlen=max(maxlen,Len[i]-1);
    }
    return maxlen;
}

int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++) scanf("%d",&s[i]);
        printf("%d\n",manacher());
    }
}

最长回文 HDU - 3068

Manacher模板题:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <ctype.h>
#include <cstring>
#include <cstdio>
#include <sstream>
#include <cstdlib>
#include <iomanip>
#include <string>
#include <queue>
#include <map>
using namespace std;
const int maxn=1e6+5;
char s[maxn*2],str[maxn*2];
int Len[maxn*2],len;

int  getstr()
{
    int k=0;
    str[k++]='$';
    for(int i=0;i<len;i++)
        str[k++]='#',
        str[k++]=s[i];
    str[k++]='#';
    return k;
}
int  Manacher()
{
    int len1=getstr();
    int mx=0,id,ans=-1;
    for(int i=1;i<len1;i++)
    {
        if(mx>i) Len[i]=min(Len[2*id-i],mx-i);
        else Len[i]=1;
        while(str[i+Len[i]]==str[i-Len[i]])
            Len[i]++;
        if(Len[i]+i>mx)
            mx=Len[i]+i,id=i;
        ans=max(Len[i],ans) ;
    }
    return ans-1;
}
int main()
{
    while(scanf("%s",&s)!=EOF)
    {
        len=strlen(s);
        printf("%d\n",Manacher());
        getchar();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值