这道题的思路是先建立一颗空树,各个节点均为零,假设读入num[i],则num[i]只需要询问i+1到
n-1有多少小于num[i]的数,然后累加即可,这样就转化为了区间操作。
这道题还用到一个结论,那就是0~n组成的序列中,把第一个数移到最后一个,逆序树先减少该数的值,再加上n-该数的值-1即为当前逆序数。
代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAX = 1e4 + 1;
int num[MAX] = { 0 };
int tree[MAX<<2] = { 0 };
void pushup(int rt) { tree[rt] = tree[rt << 1] + tree[rt << 1 | 1]; }
void build(int l, int r, int rt)
{
if (l == r) { tree[rt] = 0; return; }
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
pushup(rt);
}
void update(int pos, int l, int r, int rt)
{//cout << l << " " << r << endl;
if (l == r) { tree[rt]++; return; }
int mid = (l + r) >> 1;
if (pos <= mid) update(pos, l, mid , rt << 1);
else update(pos, mid + 1, r, rt << 1 | 1);
pushup(rt);
}
int query(int L, int R, int l, int r, int rt)
{
if (L <= l && r <= R) { return tree[rt]; }
int mid = (l + r) >> 1;
int ans = 0;
if (mid >= L) ans += query(L, R, l, mid, rt << 1);
if (mid < R) ans += query(L, R, mid + 1, r, rt << 1 | 1);
return ans;
}
int main()
{
int n;
while (cin >> n)
{
int sum = 0;
build(0, n - 1, 1);
for (int i = 1; i <= n; i++)
{
scanf_s("%d",num +i);
sum += query(num[i], n - 1, 0, n - 1, 1);
update(num[i], 0, n - 1, 1);
}
int tmp = sum;
for (int i = 1; i <= n; i++)
{
sum -= num[i];
sum += n - num[i] - 1;
tmp = min(tmp, sum);
}
cout << tmp << endl;
}
return 0;
}