《代码随想录第六十六天》——Floyd 算法、A * 算法
本篇文章的所有内容仅基于C++撰写。
1. 基础知识
1.1 题目
小明逛公园
题目描述
小明喜欢去公园散步,公园内布置了许多的景点,相互之间通过小路连接,小明希望在观看景点的同时,能够节省体力,走最短的路径。
给定一个公园景点图,图中有 N 个景点(编号为 1 到 N),以及 M 条双向道路连接着这些景点。每条道路上行走的距离都是已知的。
小明有 Q 个观景计划,每个计划都有一个起点 start 和一个终点 end,表示他想从景点 start 前往景点 end。由于小明希望节省体力,他想知道每个观景计划中从起点到终点的最短路径长度。 请你帮助小明计算出每个观景计划的最短路径长度。
输入描述
第一行包含两个整数 N, M, 分别表示景点的数量和道路的数量。
接下来的 M 行,每行包含三个整数 u, v, w,表示景点 u 和景点 v 之间有一条长度为 w 的双向道路。
接下里的一行包含一个整数 Q,表示观景计划的数量。
接下来的 Q 行,每行包含两个整数 start, end,表示一个观景计划的起点和终点。
输出描述
对于每个观景计划,输出一行表示从起点到终点的最短路径长度。如果两个景点之间不存在路径,则输出 -1。
输入示例
7 3
2 3 4
3 6 6
4 7 8
2
2 3
3 4
输出示例
4
-1
提示信息
从 2 到 3 的路径长度为 4,3 到 4 之间并没有道路。
1 <= N, M, Q <= 1000.
1 <= w <= 10000.
1.2 分析
本题是经典的多源最短路问题,即 求多个起点到多个终点的多条最短路径。
动规五部曲:
1、确定dp数组(dp table)以及下标的含义
用 grid数组来存图,那就把dp数组命名为 grid。
grid[i][j][k] = m,表示 节点i 到 节点j 以[1…k] 集合中的一个节点为中间节点的最短距离为m。
节点i 到 节点j 的最短距离为m,这句话可以理解。节点i 到 节点j 的最短路径中 一定是经过很多节点,那么这个集合用[1…k] 来表示。这里的k不能单独指某个节点,k 一定要表示一个集合,即[1…k] ,表示节点1 到 节点k 一共k个节点的集合。
2、确定递推公式
分两种情况:
- 节点i 到 节点j 的最短路径经过节点k
- 节点i 到 节点j 的最短路径不经过节点k
第一种情况,grid[i][j][k] = grid[i][k][k - 1] + grid[k][j][k - 1]。
节点i 到 节点k 的最短距离 是不经过节点k,中间节点集合为[1…k-1],所以 表示为grid[i][k][k - 1]。
节点k 到 节点j 的最短距离 也是不经过节点k,中间节点集合为[1…k-1],所以表示为 grid[k][j][k - 1]。
第二种情况,grid[i][j][k] = grid[i][j][k - 1]。
如果节点i 到 节点j的最短距离 不经过节点k,那么 中间节点集合[1…k-1],表示为 grid[i][j][k - 1]。
因为我们是求最短路,对于这两种情况自然是取最小值。即: grid[i][j][k] = min(grid[i][k][k - 1] + grid[k][j][k - 1], grid[i][j][k - 1])
3、dp数组如何初始化
grid[i][j][k] = m,表示 节点i 到 节点j 以[1…k] 集合为中间节点的最短距离为m。最初只能 把k 赋值为 0,本题 节点0 是无意义的,节点是从1 到 n。这样我们在下一轮计算的时候,就可以根据 grid[i][j][0] 来计算 grid[i][j][1],此时的 grid[i][j][1] 就是 节点i 经过节点1 到达 节点j 的最小距离了。grid数组是一个三维数组,那么我们初始化的数据在 i 与 j 构成的平层,如图:
红色的 底部一层是我们初始化好的数据,注意:从三维角度去看初始化的数据很重要。
4、确定遍历顺序
从递推公式:grid[i][j][k] = min(grid[i][k][k - 1] + grid[k][j][k - 1], grid[i][j][k - 1]) 可以看出,我们需要三个for循环,分别遍历i,j 和k,而 k 依赖于 k - 1, i 和j 的到 并不依赖与 i - 1 或者 j - 1 等等。所以遍历k 的for循环一定是在最外面,这样才能一层一层去遍历。
注意,由于k表示的是0-k个节点中的某些中间节点,而不是全部的中间节点,所以可以将数组简化为 grid[i][k] 和 grid[k][j] ,也就是下面代码的空间优化版。
1.3 代码
- 原版
#include <iostream>
#include <vector>
#include <list>
using namespace std;
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<vector<vector<int>>> grid(n + 1, vector<vector<int>>(n + 1, vector<int>(n + 1, 10005))); // 因为边的最大距离是10^4
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
grid[p1][p2][0] = val;
grid[p2][p1][0] = val; // 注意这里是双向图
}
// 开始 floyd
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
grid[i][j][k] = min(grid[i][j][k-1], grid[i][k][k-1] + grid[k][j][k-1]);
}
}
}
// 输出结果
int z, start, end;
cin >> z;
while (z--) {
cin >> start >> end;
if (grid[start][end][n] == 10005) cout << -1 << endl;
else cout << grid[start][end][n] << endl;
}
}
- 空间优化版(滚动数组)
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<vector<int>> grid(n + 1, vector<int>(n + 1, 10005)); // 因为边的最大距离是10^4
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
grid[p1][p2] = val;
grid[p2][p1] = val; // 注意这里是双向图
}
// 开始 floyd
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
grid[i][j] = min(grid[i][j], grid[i][k] + grid[k][j]);
}
}
}
// 输出结果
int z, start, end;
cin >> z;
while (z--) {
cin >> start >> end;
if (grid[start][end] == 10005) cout << -1 << endl;
else cout << grid[start][end] << endl;
}
}
- 时间复杂度: O(n^3)
- 空间复杂度:O(n^2)
2. 题目1
2.1 题目
骑士的攻击
题目描述
在象棋中,马和象的移动规则分别是“马走日”和“象走田”。现给定骑士的起始坐标和目标坐标,要求根据骑士的移动规则,计算从起点到达目标点所需的最短步数。棋盘大小 1000 x 1000(棋盘的 x 和 y 坐标均在 [1, 1000] 区间内,包含边界)
输入描述
第一行包含一个整数 n,表示测试用例的数量,1 <= n <= 100。
接下来的 n 行,每行包含四个整数 a1, a2, b1, b2,分别表示骑士的起始位置 (a1, a2) 和目标位置 (b1, b2)。
输出描述
输出共 n 行,每行输出一个整数,表示骑士从起点到目标点的最短路径长度。
输入示例
6
5 2 5 4
1 1 2 2
1 1 8 8
1 1 8 7
2 1 3 3
4 6 4 6
输出示例
2
4
6
5
1
0
提示信息
骑士移动规则如图,红色是起始位置,黄色是骑士可以走的地方。
2.2 分析
BFS 是没有目的性的 一圈一圈去搜索, 而 A * 是有方向性的去搜索。其关键在于 启发式函数。
启发式函数 要影响的就是队列里元素的排序!这是影响BFS搜索方向的关键。对队列里节点进行排序,就需要给每一个节点权值,如何计算权值呢?
每个节点的权值为F,给出公式为:F = G + H
G:起点达到目前遍历节点的距离
H:目前遍历的节点到达终点的距离
起点达到目前遍历节点的距离 + 目前遍历的节点到达终点的距离 就是起点到达终点的距离。
本题的图是无权网格状,在计算两点距离通常有如下三种计算方式:
- 曼哈顿距离,计算方式: d = abs(x1-x2)+abs(y1-y2)
- 欧氏距离(欧拉距离) ,计算方式:d = sqrt( (x1-x2)^2 + (y1-y2)^2 )
- 切比雪夫距离,计算方式:d = max(abs(x1 - x2), abs(y1 - y2))
x1, x2 为起点坐标,y1, y2 为终点坐标 ,abs 为求绝对值,sqrt 为求开根号,
选择哪一种距离计算方式 也会导致 A * 算法的结果不同。本题,采用欧拉距离才能最大程度体现 点与点之间的距离。所以 使用欧拉距离计算 和 广搜搜出来的最短路的节点数是一样的。 (路径可能不同,但路径上的节点数是相同的)
计算出来 F 之后,按照 F 的 大小,选出队列的节点。可以使用 优先级队列 帮我们排好序,每次出队列,就是F最小的节点。
2.3 代码
#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
int moves[1001][1001];
int dir[8][2]={-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,-2};
int b1, b2;
// F = G + H
// G = 从起点到该节点路径消耗
// H = 该节点到终点的预估消耗
struct Knight{
int x,y;
int g,h,f;
bool operator < (const Knight & k) const{ // 重载运算符, 从小到大排序
return k.f < f;
}
};
priority_queue<Knight> que;
int Heuristic(const Knight& k) { // 欧拉距离
return (k.x - b1) * (k.x - b1) + (k.y - b2) * (k.y - b2); // 统一不开根号,这样可以提高精度
}
void astar(const Knight& k)
{
Knight cur, next;
que.push(k);
while(!que.empty())
{
cur=que.top(); que.pop();
if(cur.x == b1 && cur.y == b2)
break;
for(int i = 0; i < 8; i++)
{
next.x = cur.x + dir[i][0];
next.y = cur.y + dir[i][1];
if(next.x < 1 || next.x > 1000 || next.y < 1 || next.y > 1000)
continue;
if(!moves[next.x][next.y])
{
moves[next.x][next.y] = moves[cur.x][cur.y] + 1;
// 开始计算F
next.g = cur.g + 5; // 统一不开根号,这样可以提高精度,马走日,1 * 1 + 2 * 2 = 5
next.h = Heuristic(next);
next.f = next.g + next.h;
que.push(next);
}
}
}
}
int main()
{
int n, a1, a2;
cin >> n;
while (n--) {
cin >> a1 >> a2 >> b1 >> b2;
memset(moves,0,sizeof(moves));
Knight start;
start.x = a1;
start.y = a2;
start.g = 0;
start.h = Heuristic(start);
start.f = start.g + start.h;
astar(start);
while(!que.empty()) que.pop(); // 队列清空
cout << moves[b1][b2] << endl;
}
return 0;
}
- 时间复杂度是 O(nlogn)
- 空间复杂度 O(b ^ d)