《代码随想录第五十二天》——每日温度、下一个更大元素I、下一个更大元素II
本篇文章的所有内容仅基于C++撰写。
1. 每日温度
1.1 题目
每日温度
给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0 来代替。
示例 1:
输入: temperatures = [73,74,75,71,69,72,76,73]
输出: [1,1,4,2,1,1,0,0]
示例 2:
输入: temperatures = [30,40,50,60]
输出: [1,1,1,0]
示例 3:
输入: temperatures = [30,60,90]
输出: [1,1,0]
提示:
1 <= temperatures.length <= 105
30 <= temperatures[i] <= 100
1.2 分析
通常是一维数组,要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置,此时我们就要想到可以用单调栈了。
本题使用单调栈维护一个递增序列(按栈顶到栈底的顺序),栈内记录的是每个元素的下标。因为要维护顺序序列,因此要分情况讨论。
- 当前元素小于等于栈顶元素时,将下标入栈;(为了称呼方便,以下将栈中下标对应的元素简称为栈中元素)
- 当前元素大于栈顶元素时,说明栈顶元素找到了第一个比它大的元素,把它弹出并记录;再把当前元素与新的栈顶元素相比,大则弹出栈顶元素,小则加入当前元素。
注意数组要初始化为0,因为有的元素可能找不到更大元素就没有出栈,无法进行更新操作。
1.3 代码
- 原版代码
// 版本一
class Solution {
public:
vector<int> dailyTemperatures(vector<int>& T) {
// 递增栈
stack<int> st;
vector<int> result(T.size(), 0);
st.push(0);
for (int i = 1; i < T.size(); i++) {
if (T[i] < T[st.top()]) { // 情况一
st.push(i);
} else if (T[i] == T[st.top()]) { // 情况二
st.push(i);
} else {
while (!st.empty() && T[i] > T[st.top()]) { // 情况三
result[st.top()] = i - st.top();
st.pop();
}
st.push(i);
}
}
return result;
}
};
- 精简版
class Solution {
public:
vector<int> dailyTemperatures(vector<int>& T) {
stack<int> st; // 递增栈
vector<int> result(T.size(), 0);
for (int i = 0; i < T.size(); i++) {
while (!st.empty() && T[i] > T[st.top()]) { // 注意栈不能为空
result[st.top()] = i - st.top();
st.pop();
}
st.push(i);
}
return result;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(n)
2. 下一个更大元素I
2.1 题目
下一个更大元素I
nums1 中数字 x 的 下一个更大元素 是指 x 在 nums2 中对应位置 右侧 的 第一个 比 x 大的元素。
给你两个 没有重复元素 的数组 nums1 和 nums2 ,下标从 0 开始计数,其中nums1 是 nums2 的子集。
对于每个 0 <= i < nums1.length ,找出满足 nums1[i] == nums2[j] 的下标 j ,并且在 nums2 确定 nums2[j] 的 下一个更大元素 。如果不存在下一个更大元素,那么本次查询的答案是 -1 。
返回一个长度为 nums1.length 的数组 ans 作为答案,满足 ans[i] 是如上所述的 下一个更大元素 。
示例 1:
输入:nums1 = [4,1,2], nums2 = [1,3,4,2].
输出:[-1,3,-1]
解释:nums1 中每个值的下一个更大元素如下所述:
- 4 ,用加粗斜体标识,nums2 = [1,3,4,2]。不存在下一个更大元素,所以答案是 -1 。
- 1 ,用加粗斜体标识,nums2 = [1,3,4,2]。下一个更大元素是 3 。
- 2 ,用加粗斜体标识,nums2 = [1,3,4,2]。不存在下一个更大元素,所以答案是 -1 。
示例 2:
输入:nums1 = [2,4], nums2 = [1,2,3,4].
输出:[3,-1]
解释:nums1 中每个值的下一个更大元素如下所述:
- 2 ,用加粗斜体标识,nums2 = [1,2,3,4]。下一个更大元素是 3 。
- 4 ,用加粗斜体标识,nums2 = [1,2,3,4]。不存在下一个更大元素,所以答案是 -1 。
提示:
1 <= nums1.length <= nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 104
nums1和nums2中所有整数 互不相同
nums1 中的所有整数同样出现在 nums2 中
2.2 分析
根据题目,要定义一个跟nums1数组大小相同的结果数组,并初始化为-1。
那么这道题的整体思路是:我们依然复用每日温度的代码在nums2数组中自比较,只是每次弹出元素时,需要判断这个元素有没有在nums1中出现过,如果出现就要向result数组更新比它大的元素值。
数组没有重复元素,我们就可以用map来做映射了。根据数值快速找到下标,还可以判断nums2[i]是否在nums1中出现过。做这个map的目的就是方便查找一个元素是否存在于nums1数组中。
unordered_map<int, int> umap; // key:下标元素,value:下标
for (int i = 0; i < nums1.size(); i++) {
umap[nums1[i]] = i;//这里做了个有趣的转换,现在值变成了“下标”,而下标变成了“值”
}
2.3 代码
- 原版
// 版本一
class Solution {
public:
vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {
stack<int> st;
vector<int> result(nums1.size(), -1);
if (nums1.size() == 0) return result;
unordered_map<int, int> umap; // key:下标元素,value:下标
for (int i = 0; i < nums1.size(); i++) {
umap[nums1[i]] = i;
}
st.push(0);
for (int i = 1; i < nums2.size(); i++) {
if (nums2[i] < nums2[st.top()]) { // 情况一
st.push(i);
} else if (nums2[i] == nums2[st.top()]) { // 情况二
st.push(i);
} else { // 情况三
while (!st.empty() && nums2[i] > nums2[st.top()]) {
if (umap.count(nums2[st.top()]) > 0) { // 查找nums2数组下标所对应的值是否在umap中出现
int index = umap[nums2[st.top()]]; // 记住umap中的下标为元素值,而值为元素下标。提取元素下标,写入结果数组
result[index] = nums2[i];
}
st.pop();
}
st.push(i);
}
}
return result;
}
};
- 精简版
class Solution {
public:
vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {
stack<int> st;
vector<int> result(nums1.size(), -1);
if (nums1.size() == 0) return result;
unordered_map<int, int> umap; // key:下标元素,value:下标
for (int i = 0; i < nums1.size(); i++) {
umap[nums1[i]] = i;
}
st.push(0);
for (int i = 1; i < nums2.size(); i++) {
while (!st.empty() && nums2[i] > nums2[st.top()]) {
if (umap.count(nums2[st.top()]) > 0) { // 看map里是否存在这个元素
int index = umap[nums2[st.top()]]; // 根据map找到nums2[st.top()] 在 nums1中的下标
result[index] = nums2[i];
}
st.pop();
}
st.push(i);
}
return result;
}
};
3. 下一个更大元素II
3.1 题目
下一个更大元素
给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。数字 x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1。
示例 1:
输入: [1,2,1]
输出: [2,-1,2]
解释: 第一个 1 的下一个更大的数是 2;数字 2 找不到下一个更大的数;第二个 1 的下一个最大的数需要循环搜索,结果也是 2。
提示:
1 <= nums.length <= 10^4
-10^9 <= nums[i] <= 10^9
3.2 分析
整体思路是把两个数组拼接在一起,这样每个元素都至少能比完一圈。
精简版的做法是还是用原数组,但是循环长度为两个原数组,循环中每次找相对位置进行比较。
3.3 代码
- 原版
// 版本一
class Solution {
public:
vector<int> nextGreaterElements(vector<int>& nums) {
// 拼接一个新的nums
vector<int> nums1(nums.begin(), nums.end());
nums.insert(nums.end(), nums1.begin(), nums1.end());
// 用新的nums大小来初始化result
vector<int> result(nums.size(), -1);
if (nums.size() == 0) return result;
// 开始单调栈
stack<int> st;
st.push(0);
for (int i = 1; i < nums.size(); i++) {
if (nums[i] < nums[st.top()]) st.push(i);
else if (nums[i] == nums[st.top()]) st.push(i);
else {
while (!st.empty() && nums[i] > nums[st.top()]) {
result[st.top()] = nums[i];
st.pop();
}
st.push(i);
}
}
// 最后再把结果集即result数组resize到原数组大小
result.resize(nums.size() / 2);
return result;
}
};
- 精简1
// 版本二
class Solution {
public:
vector<int> nextGreaterElements(vector<int>& nums) {
vector<int> result(nums.size(), -1);
if (nums.size() == 0) return result;
stack<int> st;
st.push(0);
for (int i = 1; i < nums.size() * 2; i++) {
// 模拟遍历两遍nums,注意一下都是用i % nums.size()来操作
if (nums[i % nums.size()] < nums[st.top()]) st.push(i % nums.size());
else if (nums[i % nums.size()] == nums[st.top()]) st.push(i % nums.size());
else {
while (!st.empty() && nums[i % nums.size()] > nums[st.top()]) {
result[st.top()] = nums[i % nums.size()];
st.pop();
}
st.push(i % nums.size());
}
}
return result;
}
};
- 精简2
class Solution {
public:
vector<int> nextGreaterElements(vector<int>& nums) {
vector<int> result(nums.size(), -1);
if (nums.size() == 0) return result;
stack<int> st;
for (int i = 0; i < nums.size() * 2; i++) {
// 模拟遍历两边nums,注意一下都是用i % nums.size()来操作
while (!st.empty() && nums[i % nums.size()] > nums[st.top()]) {
result[st.top()] = nums[i % nums.size()];
st.pop();
}
st.push(i % nums.size());
}
return result;
}
};