图像阈值
ret,dst = cv2.threshold(src,thresh,maxval,type)
- src:输入图,只能输入单通道图像,通常来说说是灰度图
- dst:输出图
- thresh: 阈值
- maxval : 当图像像素值超过了阈值(或者小于阈值,根据type决定),所赋予的值
- type:二值化操作类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC;cv2.THRESH_TOZ ; cv2.THRESH_TOZERO_INV
- cv2.THRESH_BINARY 超过阈值部分去maxval(最大值),否则取0
- cv2.THRESH_BINARY_INV THRESH_BINARY的反转
- cv2.THRESH_TRUNC 大于阈值部分设置为阈值,否则不便
- cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
- cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转
代码
img = cv2.imread('../imgs/cat1.jpg')
img_gray = cv2.imread('../imgs/cat1.jpg',cv2.IMREAD_GRAYSCALE)
ret,thresh1 = cv2.threshold(img_gray,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img_gray,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img_gray,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img_gray,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img_gray,127,255,cv2.THRESH_TOZERO_INV)
titles = ['Original','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img,thresh1,thresh2,thresh3,thresh4,thresh5]
for i in range(6):
plt.subplot(2,3,i+1)
plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([])
plt.yticks([])
plt.show()
效果为

图像平滑

img = cv2.imread('../imgs/opencv.png')
cv2.imshow('img',img)
blur = cv2.blur(img,(3,3))
cv2.imshow('blur',blur)
box = cv2.boxFilter(img,-1,(3,3),normalize=True)
cv2.imshow('box',box)
box = cv2.boxFilter(img,-1,(3,3),normalize=False)
cv2.imshow('box',box)
aussian = cv2.GaussianBlur(img,(5,5),1)
cv2.imshow('aussian',aussian)
median = cv2.medianBlur(img,5)
cv2.imshow('median',median)
cv2.waitKey(0)
cv2.destroyAllWindows()

小记