HDU 1087 Super Jumping! Jumping! Jumping! (DP)

探讨了在SuperJumping游戏中,如何通过动态规划算法找到从起点到终点路径上棋子价值之和的最大值。玩家需确保每一步跳跃的目标棋子值大于当前棋子值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题传送门


题面

Super Jumping! Jumping! Jumping!

   Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description

Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.
图例
The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.

Input

Input contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.

Output

For each case, print the maximum according to rules, and one line one case.

Sample Input

3 1 3 2
4 1 2 3 4
4 3 3 2 1
0

Sample Output

4
10
3

题面描述

从起点开始跳跃到终点,可以直接跳过去,也可以中途停在某个点上,但起点值必定要比停下来的点的值要小(等于也不能).求出所停下的点的和的最大值.

题目分析

动态规划.枚举每一个点出发,尽可能地在能停下来的点停下.有dp[end] = max ( dp[end] , dp[start]+value[end] );然后查找每一个点作为终点前最后一个点时的值中最大的那一个就是答案了.

具体代码

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <queue>
#include <string.h>
#include <vector>
#include <math.h>
#include <algorithm>
using namespace std;
const int maxn = 1005 ;
int arr[maxn] ;
int DP[maxn] ;
int main()
{
    int n ;
    while(scanf("%d", &n ), n ){
        for( int i = 1 ; i <= n ; i++ ){
            scanf("%d", &arr[i] ) ;
            DP[i] = arr[i] ;//从起点跳到点i,再直接跳到终点
        }
        for( int i = 1 ; i <= n ; i++ ){
            for( int j = 1 ; j < i ; j++ ){
                if( arr[i] > arr[j] && DP[i] < DP[j]+arr[i] ){//下一个点j的value必须大于点i的value
                    DP[i] = DP[j]+arr[i] ;//目标点本身的值小于新的值才更新
                }
            }
        }
        int ans = 0 ;
        for( int i = 1 ; i <= n ; i++ ){
            ans = max( ans , DP[i] ) ;
        }
        printf("%d\n", ans ) ;
    }
    return 0;
}
内容概要:本文针对国内加密货币市场预测研究较少的现状,采用BP神经网络构建了CCi30指数预测模型。研究选取2018年3月1日至2019年3月26日共391天的数据作为样本,通过“试凑法”确定最优隐结点数目,建立三层BP神经网络模型对CCi30指数收盘价进行预测。论文详细介绍了数据预处理、模型构建、训练及评估过程,包括数据归一化、特征工程、模型架构设计(如输入层、隐藏层、输出层)、模型编译与训练、模型评估(如RMSE、MAE计算)以及结果可视化。研究表明,该模型在短期内能较准确地预测指数变化趋势。此外,文章还讨论了隐层节点数的优化方法及其对预测性能的影响,并提出了若干改进建议,如引入更多技术指标、优化模型架构、尝试其他时序模型等。 适合人群:对加密货币市场预测感兴趣的研究人员、投资者及具备一定编程基础的数据分析师。 使用场景及目标:①为加密货币市场投资者提供一种新的预测工具和方法;②帮助研究人员理解BP神经网络在时间序列预测中的应用;③为后续研究提供改进方向,如数据增强、模型优化、特征工程等。 其他说明:尽管该模型在短期内表现出良好的预测性能,但仍存在一定局限性,如样本量较小、未考虑外部因素影响等。因此,在实际应用中需谨慎对待模型预测结果,并结合其他分析工具共同决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值