一、线程调度器操作函数
1、rt_system_scheduler_init 函数,此函数将初始化线程调度器。
//this function will initialize the system scheduler
void rt_system_scheduler_init(void)
{
rt_base_t offset;
rt_scheduler_lock_nest = 0;
LOG_D("start scheduler: max priority 0x%02x",
RT_THREAD_PRIORITY_MAX);
for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++)
{
rt_list_init(&rt_thread_priority_table[offset]);
}
//initialize ready priority group
rt_thread_ready_priority_group = 0;
#if RT_THREAD_PRIORITY_MAX > 32
/* initialize ready table */
rt_memset(rt_thread_ready_table, 0, sizeof(rt_thread_ready_table));
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
}
(1)调度嵌套锁初始化为0。
(2)初始化就绪优先级链表。
(3)初始化就绪优先级组为0。
2、rt_system_scheduler_start 函数,启动线程调度器。
//this function will startup the scheduler. it will select one thread with the
//highest priority level,then switch to it.
void rt_system_scheduler_start(void)
{
struct rt_thread *to_thread;
rt_ubase_t highest_ready_priority;
to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority);
rt_current_thread = to_thread;
rt_schedule_remove_thread(to_thread);
to_thread->stat = RT_THREAD_RUNNING;
//switch to new thread
rt_hw_context_switch_to((rt_ubase_t)&to_thread->sp);
/* never come back */
}
(1)获取最高就绪优先级线程,将运行线程指针指向获取的最高就绪优先级线程。
(2)从就绪链表中移除该线程,将线程状态设置为运行态。
(3)切换到此线程中运行。
3、rt_schedule 函数,此函数将会执行一次调度,它将会选择最高优先级线程,并立即切换。
//this function will perform scheduling once. it will select one thread with the highest priority,
//and switch to it immediately
void rt_schedule(void)
{
rt_base_t level;
struct rt_thread *to_thread;
struct rt_thread *from_thread;
//disable interrupt
level = rt_hw_interrupt_disable();
//check the schedduler is enabled or not
if (rt_scheduler_lock_nest == 0)
{
rt_ubase_t highest_ready_priority;
if (rt_thread_ready_priority_group != 0)
{
//need_insert_from_thread: need to insert from_thread to ready queue
int need_insert_from_thread = 0;
to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority);
if ((rt_current_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING)
{
if (rt_current_thread->current_priority < highest_ready_priority)
{
to_thread = rt_current_thread;
}
else if (rt_current_thread->current_priority == highest_ready_priority && (rt_current_thread->stat & RT_THREAD_STAT_YIELD_MASK) == 0)
{
to_thread = rt_current_thread;
}
else
{
need_insert_from_thread = 1;
}
rt_current_thread->stat &= ~RT_THREAD_STAT_YIELD_MASK;
}
if (to_thread != rt_current_thread)
{
//if the destination thread is not the same as current thread
rt_current_priority = (rt_uint8_t)highest_ready_priority;
from_thread = rt_current_thread;
rt_current_thread = to_thread;
RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (from_thread, to_thread));
if (need_insert_from_thread)
{
rt_schedule_insert_thread(from_thread);
}
rt_schedule_remove_thread(to_thread);
to_thread->stat = RT_THREAD_RUNNING | (to_thread->stat & ~RT_THREAD_STAT_MASK);
/* switch to new thread */
LOG_D("[%d]switch to priority#%d "
"thread:%.*s(sp:0x%08x), "
"from thread:%.*s(sp: 0x%08x)",
rt_interrupt_nest, highest_ready_priority,
RT_NAME_MAX, to_thread->parent.name, to_thread->sp,
RT_NAME_MAX, from_thread->parent.name, from_thread->sp);
#ifdef RT_USING_OVERFLOW_CHECK
_scheduler_stack_check(to_thread);
#endif /* RT_USING_OVERFLOW_CHECK */
if (rt_interrupt_nest == 0)
{
extern void rt_thread_handle_sig(rt_bool_t clean_state);
RT_OBJECT_HOOK_CALL(rt_scheduler_switch_hook, (from_thread));
rt_hw_context_switch((rt_ubase_t)&from_thread->sp,
(rt_ubase_t)&to_thread->sp);
/* enable interrupt */
rt_hw_interrupt_enable(level);
#ifdef RT_USING_SIGNALS
/* check stat of thread for signal */
level = rt_hw_interrupt_disable();
if (rt_current_thread->stat & RT_THREAD_STAT_SIGNAL_PENDING)
{
extern void rt_thread_handle_sig(rt_bool_t clean_state);
rt_current_thread->stat &= ~RT_THREAD_STAT_SIGNAL_PENDING;
rt_hw_interrupt_enable(level);
/* check signal status */
rt_thread_handle_sig(RT_TRUE);
}
else
{
rt_hw_interrupt_enable(level);
}
#endif /* RT_USING_SIGNALS */
goto __exit;
}
else
{
LOG_D("switch in interrupt");
rt_hw_context_switch_interrupt((rt_ubase_t)&from_thread->sp,
(rt_ubase_t)&to_thread->sp, from_thread, to_thread);
}
}
else
{
rt_schedule_remove_thread(rt_current_thread);
rt_current_thread->stat = RT_THREAD_RUNNING | (rt_current_thread->stat & ~RT_THREAD_STAT_MASK);
}
}
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
__exit:
return;
}
(1)关闭中断。
(2)检查调度器是否使能。
(3)如果就绪优先级组不等于0,获取最高优先级线程。
(4)如果当前线程是运行态,如果当前线程优先级小于最高就绪优先级,将to_thread 指向当前运行线程。
(5)如果to_thread 不等于当前线程,执行线程切换。
4、rt_schedule_insert_thread函数,此函数将会插入一个线程到系统就绪链表,线程的状态将会被设置为就绪态,线程将会从挂起链表中移除。
void rt_schedule_insert_thread(struct rt_thread *thread)
{
rt_base_t level;
RT_ASSERT(thread != RT_NULL);
//disable interrupt
level = rt_hw_interrupt_disable();
//it's current thread, it should be RUNNING thread
if (thread == rt_current_thread)
{
thread->stat = RT_THREAD_RUNNING | (thread->stat & ~RT_THREAD_STAT_MASK);
goto __exit;
}
//READY thread, insert to ready queue
thread->stat = RT_THREAD_READY | (thread->stat & ~RT_THREAD_STAT_MASK);
//there is no time slices left(YIELD), inserting thread before ready list
if((thread->stat & RT_THREAD_STAT_YIELD_MASK) != 0)
{
rt_list_insert_before(&(rt_thread_priority_table[thread->current_priority]),
&(thread->tlist));
}
// there are some time slices left, inserting thread after ready list to schedule it firstly at next time
else
{
rt_list_insert_after(&(rt_thread_priority_table[thread->current_priority]),
&(thread->tlist));
}
LOG_D("insert thread[%.*s], the priority: %d",
RT_NAME_MAX, thread->parent.name, thread->current_priority);
//set priority mask
#if RT_THREAD_PRIORITY_MAX > 32
rt_thread_ready_table[thread->number] |= thread->high_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
rt_thread_ready_priority_group |= thread->number_mask;
__exit:
//enable interrupt
rt_hw_interrupt_enable(level);
}
(1)关闭中断。
(2)如果它是当前线程,它应该变成运行线程。
(3)就绪线程,插入就绪链表。
(4)如果线程没有时间片,将会插入到就绪链表的前面,如果有时间片,将会插入到就绪链表的后面。
(5)就绪优先级分组中置位。
(6)开启中断。
5、rt_schedule_remove_thread 函数,此函数将会从系统优先级链表中移除一个线程。
//this function will remove a thread from system ready queue.
void rt_schedule_remove_thread(struct rt_thread *thread)
{
rt_base_t level;
RT_ASSERT(thread != RT_NULL);
//disable interrupt
level = rt_hw_interrupt_disable();
LOG_D("remove thread[%.*s], the priority: %d",
RT_NAME_MAX, thread->parent.name,
thread->current_priority);
//remove thread from ready list
rt_list_remove(&(thread->tlist));
if (rt_list_isempty(&(rt_thread_priority_table[thread->current_priority])))
{
#if RT_THREAD_PRIORITY_MAX > 32
rt_thread_ready_table[thread->number] &= ~thread->high_mask;
if (rt_thread_ready_table[thread->number] == 0)
{
rt_thread_ready_priority_group &= ~thread->number_mask;
}
#else
rt_thread_ready_priority_group &= ~thread->number_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
}
//enable interrupt
rt_hw_interrupt_enable(level);
}
(1)关闭中断。
(2)从就绪链表中移除线程。
(3)如果当前优先级就绪链表为空,则将线程就绪优先级组置为0。
(4)使能中断。
6、rt_enter_critical 函数,调度锁,此函数将会锁住线程调度。
/**
* @brief This function will lock the thread scheduler.
*/
void rt_enter_critical(void)
{
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
/*
* the maximal number of nest is RT_UINT16_MAX, which is big
* enough and does not check here
*/
rt_scheduler_lock_nest ++;
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
7、rt_exit_critical 函数,此函数将会解锁线程调度。
/**
* @brief This function will unlock the thread scheduler.
*/
void rt_exit_critical(void)
{
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
rt_scheduler_lock_nest --;
if (rt_scheduler_lock_nest <= 0)
{
rt_scheduler_lock_nest = 0;
/* enable interrupt */
rt_hw_interrupt_enable(level);
if (rt_current_thread)
{
/* if scheduler is started, do a schedule */
rt_schedule();
}
}
else
{
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
}
8、rt_critical_level 函数,获取当前调度锁等级。
/**
* @brief Get the scheduler lock level.
*
* @return the level of the scheduler lock. 0 means unlocked.
*/
rt_uint16_t rt_critical_level(void)
{
return rt_scheduler_lock_nest;
}
9、_scheduler_get_highest_priority_thread 函数,调度获取最高优先级线程。
static struct rt_thread* _scheduler_get_highest_priority_thread(rt_ubase_t *highest_prio)
{
struct rt_thread *highest_priority_thread;
rt_ubase_t highest_ready_priority;
#if RT_THREAD_PRIORITY_MAX > 32
rt_ubase_t number;
number = __rt_ffs(rt_thread_ready_priority_group) - 1;
highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1;
#else
highest_ready_priority = __rt_ffs(rt_thread_ready_priority_group) - 1;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
//get highest ready priority thread
highest_priority_thread = rt_list_entry(rt_thread_priority_table[highest_ready_priority].next,
struct rt_thread,
tlist);
*highest_prio = highest_ready_priority;
return highest_priority_thread;
}
10、_scheduler_stack_check 函数,栈溢出检查。
#ifdef RT_USING_OVERFLOW_CHECK
static void _scheduler_stack_check(struct rt_thread *thread)
{
RT_ASSERT(thread != RT_NULL);
#ifdef RT_USING_SMART
#ifndef ARCH_MM_MMU
struct rt_lwp *lwp = thread ? (struct rt_lwp *)thread->lwp : 0;
/* if stack pointer locate in user data section skip stack check. */
if (lwp && ((rt_uint32_t)thread->sp > (rt_uint32_t)lwp->data_entry &&
(rt_uint32_t)thread->sp <= (rt_uint32_t)lwp->data_entry + (rt_uint32_t)lwp->data_size))
{
return;
}
#endif /* not defined ARCH_MM_MMU */
#endif /* RT_USING_SMART */
#ifdef ARCH_CPU_STACK_GROWS_UPWARD
if (*((rt_uint8_t *)((rt_ubase_t)thread->stack_addr + thread->stack_size - 1)) != '#' ||
#else
if (*((rt_uint8_t *)thread->stack_addr) != '#' ||
#endif /* ARCH_CPU_STACK_GROWS_UPWARD */
(rt_ubase_t)thread->sp <= (rt_ubase_t)thread->stack_addr ||
(rt_ubase_t)thread->sp >
(rt_ubase_t)thread->stack_addr + (rt_ubase_t)thread->stack_size)
{
rt_base_t level;
rt_kprintf("thread:%s stack overflow\n", thread->parent.name);
level = rt_hw_interrupt_disable();
while (level);
}
#ifdef ARCH_CPU_STACK_GROWS_UPWARD
else if ((rt_ubase_t)thread->sp > ((rt_ubase_t)thread->stack_addr + thread->stack_size))
{
rt_kprintf("warning: %s stack is close to the top of stack address.\n",
thread->parent.name);
}
#else
else if ((rt_ubase_t)thread->sp <= ((rt_ubase_t)thread->stack_addr + 32))
{
rt_kprintf("warning: %s stack is close to end of stack address.\n",
thread->parent.name);
}
#endif /* ARCH_CPU_STACK_GROWS_UPWARD */
}
#endif /* RT_USING_OVERFLOW_CHECK */