【莫烦Python】PyTorch 神经网络_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Vx411j7kT?p=7
.ToTensor():
transf = transforms.ToTensor()
img_tensor = transf(img)
.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)):
均值和标准差
之前版本导入激活函数:
import torch.nn.functional as F
x = F.relu(self.conv1(x))
现在直接:
import torch.nn as nn
nn.Conv2d(input_c, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True)
torch.unsqueeze(): 扩展维度
返回一个新的张量,对输入的既定位置插入维度1
torch.squeeze(): 压缩维度
返回一个新的张量,对输入的既定位置减少维度1,减少一个[]
类型转换:
矩阵相乘:
np中可以 A = np.array(data) A.dot(B)
定义变量和是否记录反向传播路径:
variable和tensor合并,直接
tensor = torch.FloatTensor([[1,2],[3,4]])
variable = tensor.requires_grad_(requires_grad = True)