1.优化方式
2.神经网络的训练和测试
import numpy as np
import random
import warnings
warnings.filterwarnings("ignore", category=Warning)
def load_data():
# 下载MNIST数据集
dataset = np.load('./mnist.npz', allow_pickle=True)
print(dataset.files)
# print(len(dataset.files))
# print(dataset['x_train'])
x_train = dataset['x_train']
labels_train = dataset['y_train']
x_test = dataset['x_test']
labels_test = dataset['y_test']
# 划分数据集
total_num = len(x_train)
split_valid = 0.2
train_num = int((total_num * (1-split_valid)))
# 数据集划分为训练集和验证集
# 训练集
train_x = x_train[:train_num]
train_labels = labels_train[:train_num]
# 验证集
valid_x = x_train[train_num:]
valid_labels = labels_train[train_num:]
# 测试集
test_x = x_test
test_labels = labels_test
return (train_x,train_labels,valid_x,valid_labels,test_x,test_labels)
def load_data_wrapper():
tr_d,tr_l,va_d,va_l,te_d,te_l = load_data()
# tr_d[0]: x; 1*784
# tr_l[1]: y; 0-9
training_inputs = [np.reshape(x, (784, 1)) for x in tr_d]
training_results = [vectorized_result(y) for y in tr_l]
training_data = zip(training_inputs, training_results)
validation_inputs = [np.reshape(x, (784, 1)) for x in va_d]
validation_data = zip(validation_inputs, va_l)
test_inputs = [np.reshape(x, (784, 1)) for x in te_d]
test_data = zip(test_inputs, te_l)
return (training_data, validation_data, test_data)
def vectorized_result(j):
v = np.zeros((10, 1))
v[j] = 1.0
return v
class Network(object):
def __init__(self, sizes):
"""初始化权重和偏置
:param sizes: 每一层神经元数量,类型为list
weights:权重
biases:偏置
"""
self.sizes = sizes
self.num_layers = len(sizes)
self.weights = np.array([np.random.randn(x, y) for x, y in zip(sizes[1:], sizes[:-1])])
self.biases = np.array([np.random.randn(y, 1) for y in sizes[1:]])
def feedforward(self, a):
"""对一组样本x进行预测,然后输出"""
for w, b in zip(self.weights, self.biases):
a = sigmoid(np.dot(w, a) + b)
return a
def gradient_descent(self, training_data, epochs, mini_batch_size, alpha, test_data=None):
"""MBGD,运行一个或者几个batch时更新一次
:param training_data: 训练数据,每一个样本包括(x, y),类型为zip
:epochs: 迭代次数
:mini_batch_size:每一个小批量数据的数量
:alpha: 学习率
:test_data: 测试数据
"""
training_data = list(training_data)
n = len(training_data)
test_data = list(test_data)
total_test = len(list(test_data))
for i in range(epochs):
random.shuffle(training_data)
mini_batches = [training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
init_ws_derivative = np.array([np.zeros(w.shape) for w in self.weights])
init_bs_derivative = np.array([np.zeros(b.shape) for b in self.biases])
for x, y in mini_batch:
activations, zs = self.forwardprop(x) #前向传播
delta = self.cost_deviation(activations[-1], zs[-1], y) #计算最后一层误差
ws_derivative, bs_derivative = self.backprop(activations, zs, delta) #反向传播,cost func对w和b求偏导
init_ws_derivative = init_ws_derivative + ws_derivative
init_bs_derivative = init_bs_derivative + bs_derivative
self.weights = self.weights - alpha / len(mini_batch) * init_ws_derivative
self.biases = self.biases - alpha / len(mini_batch) * init_bs_derivative
if test_data:
print("Epoch {} : {} / {}".format(i, self.evaluate(test_data),total_test)) #识别准确数量/测试数据集总数量
print("accuracy:%.2f%%" % (self.evaluate(test_data) / float(total_test) * 100))
else:
print("Epoch {} complete".format(i))
def forwardprop(self, x):
"""前向传播"""
activation = x
activations = [x]
zs = []
for w, b in zip(self.weights, self.biases):
z = np.dot(w, activation) + b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
return (activations, zs)
def cost_deviation(self, output, z, y):
"""计算最后一层误差"""
return (output - y) * sigmoid_derivative(z)
def backprop(self, activations, zs, delta):
"""反向传播"""
ws_derivative = np.array([np.zeros(w.shape) for w in self.weights])
bs_derivative = np.array([np.zeros(b.shape) for b in self.biases])
ws_derivative[-1] = np.dot(delta, activations[-2].transpose())
bs_derivative[-1] = delta
for l in range(2, self.num_layers):
z = zs[-l]
delta = np.dot((self.weights[-l+1]).transpose(), delta) * sigmoid_derivative(z)
ws_derivative[-l] = np.dot(delta, activations[-l-1].transpose())
bs_derivative[-l] = delta
return (ws_derivative, bs_derivative)
def evaluate(self, test_data):
"""评估"""
test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
return sum(int(output == y) for (output, y) in test_results)
def sigmoid(z):
return 1.0 / (1.0 + np.exp(-z))
def sigmoid_derivative(z):
"""sigmoid函数偏导"""
return sigmoid(z) * (1 - sigmoid(z))
if __name__ == '__main__':
training_data, validation_data, test_data = load_data_wrapper()
net = Network([784, 30, 10]) #28*28
net.gradient_descent(training_data, 50, 100, 0.5, test_data=test_data)
训练结果: